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ABSTRACT

The NASA Space Station has the potential to provide significant economic benefits to commercial

communications satellite operators. The initial reports NASA CR179526 and CR179527 quantified

the benefits of new space-based activities and assessed the impacts on the satellite design and the

Space Station. This report gives results for the following additional tasks:

1. Quantify the value of satellite retrievability operations and define its operational aspects.

2. Evaluate the use of expendable launch vehicles for transportation of satellites from the earth

to the Space Station. (The initial study assumed use of the Space Shuttle only.)

3. Quantify the economic value of modular satellites that are assembled and serviced in space.

The major study results are as follows:

The newly developed DOMSAT HI financial model which explicitly considers satellite system

reliability predicts greater benefits for use of the Space Station in the launch of commercial

communications satellites. Not only is return-on-investment improved (16.3% vs 9.9%), but

also financial risk (defined as the standard deviation of the return-on-investment) is reduced

(1.7% vs 4.8%) The financial risk is lower for the Space Station scenario because of the greater

overall reliability achieved by use of the Space Station, in particular the greater reliability of

the space-based OTV launch versus the solid rocket upper stages of the ELV.

In-orbit, at the Space Station, and return-to-earth repair scenarios are analyzed with the

result that there is no improvement in economic performance (increased rate-of-return or

reduced risk) for the particular scenarios considered. In general, space retrieval operations
are not financially viable for commercial communications satellites. However, specific "high

value" or "easy" cases may still be attractive to retrieve, and thus while retrieval/repair

operations are judged to be infrequent, NASA should have capability for retrieval and repair

at the Space Station.

• Cost analysis shows that using ELVs in place of the Shuttle changes launch costs, but does

not change the value of the APOs compared to business-as-usual ELV delivery to GEO.

• An ELV system is needed to support the Space Station. Additional studies should be initiated

as to the feasibility and requirements for an ELV that can dock with the Space Station.

Three modular satellite designs are analyzed. The result is significantly better economic

performance provided that the satellite development and transportation costs are not greatly
affected.

The planned Space Station infrastructure will support on-orbit assembly and servicing. The

Integrated Orbital Servicing System should be used for the first generation remote servicing

system since the Orbital Spacecraft Consumables Resupply System is too large. A smaller

refueling kit or OMV scavenging system should be developed.

On orbit assembly and servicing can be supported by the Phase II Space Station. However,
at least one OMV should be added to the fleet to allow for extended remote operations. Also

the fueling platforms should have their own dedicated robotic systems for automated fueling.
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Section I

INTRODUCTION

1 Background

The original work on the Communications Satel-

lite System Operations with the Space Station

Contract is published in two NASA Reports:

• Vol. I - Executive Summary (CR179526)

• Vol. II - Technical Report (CR179527)

This volume is the technical report for three ad-

ditional tasks that came out of the original study.

2 Previous Work

The focus of the initial study was to identify

how the NASA Space Station can provide signif-
icant economic benefits to commercial commu-

nications satellite operators. Section II of this

report describes this work which is summarized
below:

• A financial model was developed which de-

scribes quantitatively the economics of the

space segment of communication satellite

systems. The model described the economic

status of the system throughout the lifetime

of the satellite. The economic performance

was given in terms of total capital cost and
rate of return on investment.

• The expected state-of-the-art status of com-

munications satellite systems and opera-

tions beginning service in 1995 was assessed
and described. The results of the assess-

ment were utilized to postulate and describe

representative satellite systems.

• New or enhanced space-based activities and

associated satellite system designs that have

the potential to achieve future communi-

cations satellite operations in geostationary

orbit with improved economic performance

were postulated and defined. These activ-

ities included retrieval, upper stage launch

with an orbital transfer vehicle, deployment

of appendages, checkout, fueling, assembly,
and servicing of satellites.

The financial model was used to determine

the economic performance of these differ-
ent activities and combinations of activi-

ties. The use of the space-based OTV to
transport satellites from low earth orbit to

geostationary orbit offered the greatest eco-
nomic benefit.

• Three scenarios using combinations of

space-based activities were analyzed: (1)

a spin stabilized satellite, (2) a three axis

satellite, and (3) assembly at the Space Sta-

tion and GEO servicing. The economic per-

formance of the scenarios was analyzed.

• Functional and technical require-

ments placed on the Space Station by the

scenarios were detailed. Requirements on
the satellites were also listed.

The major study results were as follows:

1. Economic benefits are realizable for the

commercial communications satellite indus-

try with use of the Space Station.

. A space-based OTV is necessary to carry

out APOs in a timely and cost-effective
manner.

. A study of the economics of retrieval mis-
sions and the influence of retrieval on the

insurance industry is required in order to

I-1



accuratelydemonstratethevalueof retriev-
ability for the satellite.

o Further NASA-sponsored study of a modu-

lar satellite design capable of being assem-

bled in LEO (at the Space Station) and ser-

viced in GEO is required.

. Space Station hardware required for satel-
lite missions should be installed as soon

as possible to demonstrate NASA commit-
ment.

As a result of these conclusions, three addi-

tional tasks were added onto the scope of the
contract and are these new results are described

in this report.

3 Approach

The original technical work was divided into four

tasks which are now complete:

1. Develop satellite financial model.

2. Determine economic performanc e of the

business as usual scenario, 1995.

3. Economic assessment of new space-based
activities for 1995.

4. Develop Space Station scenarios and re-

quirements.

Three additional tasks were added to the original

contract in February 1987:

5. Satellite retrievability study.

6. Impact of the use of expendable launch ve-
hicles.

7. On-orbit assembly and servicing study.

One additional tasks was added to the con-

tract in August 1987:

8. 0TV/communications satellite interface re-

quirements.

These eight tasks are summarized below. 0nly

an abbreviated summary is given of Tasks 1

through 4 since they are complete and described

in a previous technical report.

3.1 Task 1: Develop Satellite Finan-
cial Model

3.1.1 Develop Basic Financial Model

Develop afinancial model to describe quanti-

tatively the economics of the space segment of

U. S. domestic Fixed Satellite Service (FSS)
communication satellite systems. The model

describes the economic status of the system

throughout the lifetime of the satellite. The

model is applicable over the range of satel-
lites expected to be implemented over the next

10 years.

3.1.2 Impact of System Characteristics

on Financial Model Output

Identify those Communication satellite system

technical and functional characteristics that sig-
nificantly affect the economic factors used in the

model developed in Subtask 1A and the model

output values.

3.2 Task 2: Determine Economic

Performance of Business as Usual

Scenario, 1995

Assess and describe the expected state-of-the-art

status of communications satellite systems and

operations for U. S. domestic FSS systems ini-

tially entering service in 1995. The results of the

assessment are used to postulate and describe at

least three representative satellite systems.

3.3

3.3.1

Task 3: Economic Assessment of

New Space-Based Activities for

1995

Postulate New Space-Based Oper-
ations

Postulate and define new or enhanced space-

based activities, procedures, and operations

(APOs) and associated satellite system designs

that have the potential to achieve future com-

munications satellite operations in geostationary

orbit with improved economic performance. The

availability of the Space Station and its associ-

ated systems as projected by NASA will be as-
sumed.

I-2
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3.3.2 Evaluate the Economics of Space-
Based APOs

Establish economic target values or target costs

for the APOs postulated in Task 3 that would

provide an incentive for their implementation by
the industry.

3.4 Task 4: Develop Space Station

Scenarios and Requirements

Describe at least two communications satellite

system operating scenarios implementing differ-
ent combinations of the AP0s defined in Task 3

through utilization of a low earth orbit Space

Station and its supporting equipment and sys-
tems.

3.5 Task 5: Satellite Retrievability

The objective of this task is to demonstrate

the value of satellite retrievability and to define

its operational aspects on the satellite and the

Space Station. There are four subtasks:

A. Develop a database of possible communica-

tion satellite failure modes, historical failure

data, probabilities of failure, and potential

repair scenarios. The database will include:

• A list of satellite failure modes includ-

ing actual failure data.

• Probabilities of failure for each mode.

• An estimate of the feasibility of space

or ground repair for each mode.

• Estimates of capital costs for repairs.

• Transportation costs and "fees" for re-

pairs.

• List of most likely failure scenarios.

B. Assess the financial risk for retrieval and

non-retrieval scenarios. Calculate the ex-

pected financial rates of return and stan-

dard deviation of rates of return (financial

risk) for the failure scenarios with retrieval

and compare to thoses of the non-retrieval
scenarios.

C°

D.

Determine the impact of satellites having

retrieval capability from the insurance in-

dustry's business viewpoint. Determine the

potential insurance rate reductions, percep-

tions of increased risk of performing the re-

trievai operation versus the benefits to be

gained, and the possible insistence on all

satellites having retrieval capability.

Determine the physical and operational re-

quirements on the Space Station imposed

by satellite retrieval operations and recom-

mend to NASA changes required in the

Space Station infrastructure necessary to

accommodate those operations.

3.6 Task 6: Impact of Use of ELVs

The original study tasks 1 through 4 assumed

use of the Shuttle. However, recent changes in

Shuttle use policy require an evaluation of the

use of Expendable Launch Vehicles (ELVs) for

transport from earth to the Space Station. There
are four subtasks:

A.

B.

Identify and characterize existing and

planned expendable launch vehicles. De-

termine the capabilities of all existing and

planned, foreign and domestic, launch ve-
hicles that could be used for communica-

tion satellite launches from the present to

the year 2000.

Determine the impact of ELV usage, as op-

posed to Shuttle usage, on the activities,

procedures and operations (AP0) scenarios
and economics defined in Task 3.

C. Analyze the operational aspects of ELVs as

they relate to the APOs and recommend

changes that could improve the APO val-

ues. Determine how ELV operations would

interface with the Space Station.

D. Recommend possible policy procedures for

ELV use enabling the AP0s in conjunction

with the Space Station.
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3.7 Task 7: On-Orbit Assembly and
Servicing

The objective is to demonstratethe potential
economicvalueof amodularsatellitedesignthat
couldbeassembledandservicedin space.There
arefour subtasks:

A. Formulatea designconceptfor a modular
communicationssatelliteallowingassembly
at the SpaceStation and havingservicing
capability. Servicingwill encompassun-
scheduledrepairoperations,routine main-
tenance,andcapabilityupgrading.Identify
waysin which this designmayleadto im-
provedserviceeconomics.

B. Quantify and evaluatethe economicper-
formanceof spacecommunicationssystems
employingthe modularsatellitedesignand
associatedoperations.

C. Determinethe requirementsimposedon the
SpaceStation to perform the assemblyof
themodularsatelliteandfor theSpaceSta-
tion complexto supportgeostationaryser-
vicingoperations.

D. Recommenda courseof actionto beunder-
takenby NASAthat wouldpromotethede-
velopmentand useof modularcommunica-
tionssatellites.

3.8 Task 8: Precursor OTV - Com-

munications Satellite Interface

Requirements

This task was initiated in August 1987 in or-

der to provide support information to General

Dynamics Corporation (GDC). There are three
subtasks:

A. Provide the communications satellite re-

quirements needed by the GDC Study

Centaur Operations at the Space Station

(NAS3-24900) for physical interfaces with

the Centaur-G Prime, environmental pro-

tection, power, and similar items.

B. Use the financial analysis model developed
in the Task i of the Ford Contract to further
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Section Task Content of Section I
I w

II

III 5

IV 6

V 7

VI 8

VII -

Introduction

Summary of Previous Work

Satellite Retrievability

Impact of ELVs

Assembly and Servicing

OTV/Satellite Interface
Conclusions

A

B

C

D

5A Satellite Failures

6A Expendable Launch Vehicles
5B Domsat III Model

5C Insurance Interviews

Table I-1: Organization of Report

define benefits to communications satellite

operations of using the OTV, as enhanced

by using the Centaur-G Prime as a precur-

sor OTV during the development phase.

C. Participate in two meetings with GDC per-

sonnel, one at GDC in San Diego and one

at Ford Aerospace in Palo Alto.

4 Organization of Report

Table I-1 shows the organization of the report

and the correspondence between sections and

tasks. Section II gives a summary of the previous

work, and Sections III through VI give results

for Tasks 5 through 8 respectively. Section VII

summarizes the conclusions of the study.

Appendix A contains a database of histori-

cal satellite failures and Appendix B contains a

database of expendable launch vehicle types and

capacities. Appendix C gives a description of the

DOMSAT III Financial Model and Appendix D

gives results of insurance industry interviews.
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Section II

SUMMARY of PREVIOUS WORK

This section gives a summary of the work

previously completed and described in NASA

CR179526, Vol. I - Executive Summary, and

NASA CR179527, Vol. II - Technical Report.

There were three objectives of the initial

study:

Develop a quantitative methodology to as-

sess the viability of a broad range of new

space-based activities, procedures, and op-

erations (APOs) when utilized in commer-

cial communications satellite system opera-

tions;

Apply the developed methodology to select

which of these APOs can be competitively

provided by the Space Station and its asso-

ciated operating systems; and

Determine the economic and functional re-

quirements imposed on the Space Station

through the provision of these selected
APOs.

The technical results are summarized in six

subsections:

1. Financial Model

2. Baseline Economic Performance

3. New Space-Based Activities

4. Space Station Scenarios

5. Space Station Requirements

6. Recommendations

1 Financial Model

A communications satellite financial model (the

Financial Model) that describes quantitatively

the economics of the space segment of U. S.
domestic fixed satellite service communication

satellite systems was developed by Coopers &

Lybrand under subcontract to Ford Aerospace.

(Ground terminals and terrestrial system costs

are excluded from consideration except for satel-

lite telemetry, tracking, and control systems.)
The Financial Model describes the economic

status of the system throughout the lifetime of

the satellite beginning with its design and con-

tinuing through its construction, launch, and

commercial operations. It can be applied to

the range of satellite sizes, communications pay-

loads, andlifetlmes expected to be implemented
in the 1985 to 1995 time frame.

The Model was calibrated by analysis of three

1985 satellite systems and validated by compar-

ison with actual satellite system economic per-

formance. Significant satellite system character-

istics were identified and a sensitivity analysis of

the impact on system economic performance was

performed.

2 Baseline Economic Perfor-

mance

2.1 Definition of 1995 Systems

The economic performance for the following four

1995 satellite types was analyzed:

• Ku-band spin-stabilized satellite;

• Ku-band 3-axis satellite;

• Hybrid (C and Ku-bands) 3-axis satellite;

II - 1



• LargeKu-band3-axissatellite.

TableII-3 summarizesthe characteristicsof the
four satellites.

2.2 Economic Performance

Tables II-1 and II-2 give the economic perfor-
mance of the 1995 baseline satellites. The ini-

tial rates-of-return were adjusted to account for

a postulated 33% transponder price reduction

from 1985 to 1995. Capital costs are stated in
1985 dollars and are the total of all costs associ-

ated with building and launch of the satellite.

Table II-1 gives the dual terminal rate-of-

return (DTRR) for the four satellite types that
are analyzed. (See Volume II, Technical Report,

Subsection II-3.3 for an explanation of DTRR.)

The 1985 column gives the Financial Model re-
sults for the 1985 launch satellites with a basic

transponder price of $1.9 M per year (C-band,

5.5 W, 36 MHz bandwidth).
The "initial" 1995 returns are for the 1995

satellite designs (50% more capacity) and the

same basic transponder price. The "final" 1995

returns were adjusted 4.4 points lower so that the

average return equals the average 1985 return.

This required a 33% decrease in basic transpon-

der price.

The Large satellite is a 1995 design. Its "ini-
tial" and "final" returns are 29.6% and 25.1% re-

spectively. The higher return implies that tran-

sponder prices could be further reduced.

Table II-2 gives the capital costs of the base-

line satellites. The greater costs of the 1995
satellites are due to the increased number and

power of the transponders.

2.3 Discussion of Economics :

There is little to choose between the capital costs

and rates of return f_0r the spinner and 3-axis

Ku-band systems. However, due to its greater

number of transponders, the hybrid system has

a 3% greater rate of return.

This is achieved without selling any cross-

connected transponders; i.e. transponder prices
are based on all C and all Ku-band sales. As dis-

cussed in Subsection III-4.8 of the Technical Re-

DTRR Return, %

Satellite 1985 _5
Design [ Initial [ Final

C/Ku Spinner 18.1 23.4 18.9
Ku 3-axis 19.8 23.3 18.8

Hybrid 3-axis 21.9 26.5 21.9

Large 3-axis - 29.6 25.1

Table II-l: DTRR for Satellite Systems

Satellite

Design

C/Ku Spinner
Ku 3-axis

Hybrid 3-axis

Large 3-axis

al Cost, $ M1995

76.5 115.1

104.3 116.8

83.1 138.8

- 215.4

Table II-2: Capital Costs for Satellites

port, sales of hybrid pairs of transponders bring
a 30% premium and would further increase the

return. For the purposes of this analysis, we take
the conservative assumption that revenues from

sales of hybrid pairs will be offset by a decrease in

utilization of the remaining "wrong way" pairs.

The impressive results for the large satellite

are due to economies of scale. The implication

is clearly that this is the satellite design of the fu-

ture. An 18% transponder price reduction from

the best performing 1995 satellite is achieved,
and a 45% price reduction from the 1985 satel-

lite systems.

3 New Space-Based APOs

3.1 Postulation of APOs

New or enhanced space-based Activities, Proce-

dures, and Operations (APOs) and associated

satellite system designs that have the potential

to achieve future communications satellite oper-

ations in geostationary orbit with improved ec6-
nomic performance have been defined.

The criteria for selection of the APOs are in-

creased communications satellite technical and
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Baselinesatellite
Designlife (yr)
BOL mass(kg)
Payloadmass(kg)
- Antenna(kg)
- Transponder(kg)
EOL power(W)
Stabilization
Frequencies
Numberof transponders:
- C-band
- Ku-band
Transponderbandwidth:
- C-band(MHz)
- Ku-band(MHz)
Transponderpower:
- C-band(W)
- Ku-band(W)
Antennacoverages:
- C-band

- Ku-band

Satellite EIRP (Conus):

- C-band (dBW)

- Ku-band (dBW)

Launch vehicle(s):

Satellite Cost ($M, 1985)

Spinner Ku-Band Hybrid Large

Hughes 393
10

1377

261

29

232

2900

Spin
Ku-band

24

54

5O

46

Ariane 4

STS/PAM D2
54.2

RCA K2

10

1044

261

29

232

3000

3-axis

Ku-band

24

54

50

3

46

Ariane 4

STS/PAM D2
50.9

Ford FS-1300

10

1540

342

52

290

4200

3-axis

C/Ku-bands

24

24&6

36

36 & 72

10

35

36

46

Ariane 4

STS/Ford
64.6

Hectosat

10

2144

747

161

586

3100

3-axis

Ku-band

108

36

2O

9

46

Ariane 4

STS/IUS
88.1

Table II-3: Summary of 1995 Satellite Characteristics
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economicperformance.The selectionof APOs
is madebasedon predicted available technology
and judgment of economic value. There were
eleven APOs considered.

1. Emergency retrieval from LEO

2. Ground-based orbital trans-

fer vehicle (OTV) launch to geostationary

transfer orbit (GTO)

3. Ground-based OTV launch to geosyn-

chronous earth orbit (GEO)

4. Deployment of appendages at shuttle

5. Space-based OTV launch to GTO

6. Space-based OTV launch to GEO

7. Deployment of appendages at Station

8. Checkout at Space Station

9. Fueling at Space Station

10. Assembly at Space Station

11. Servicing/replacement for GEO satellites

- Transport to low earth orbit (LEO) for

servicing

- Servicing in GEO

The APOs are listed in order from simplest to

most complex, which is approximately the same

as chronological for availability.

3.2 Economics of APOs

The Financial Model was used to analyze the
economics of the individual and combination

APOs for the 1995 spinner and 3-axis hybrid

satellite designs. Table II-4 gives a summary of

APO economic performance.
The APO value is defined as the "fee" NASA

could charge for the APO that would result

in the same economic performance as for the

business-as-usual scenario. The major influences

on economic value are the following:

• Savings in STS launch costs due to decrease
in mass.

• Savings in insurance costs (20% nominal

rate).

• Increase in satellite cost.

The combination APOs have an additional value

due to the fact that some of the same satellite

equipment is required for different APOs.

The conclusion is that use of the space-based

OTV for transport of two or more 3-axis satel-

lites from LEO to GEO is the high value APO

that can make commercial satellite operations

with the Space Station a reality. Once at the

Space Station, other APOs of marginal value but

important to the particular mission can be done.

4 Space Station Scenarios

Three communications satellite system operat-

ing scenarios implementing different combina-

tions of APOs are analyzed. The economic
performance of these scenarios is evaluated and

compared to the baseline performance. Finally

the sensitivity of the results to different insur-

ance and launch cost assumptions is analyzed.

The following scenarios are chosen for evalua-
tion:

• Spinner satellite scenario:

• 3-axis satellite scenario:

• Assembly/servicing scenario:

The spinner satellite APO scenario is not eco-
nomically attractive but is included for com-

pleteness. It is our belief that satellites will have

a 3:axis design in order to best utilize the capa-
bilities of the Space Station,

The assembly/servicing scenario requires a

completely new satellite design which will not

evolve until the Space Station is in orbit. Its

IOC (initial operational capability) is unlikely

to be 1995 but rather the year 2000.

4.1 Spinner Satellite Scenario

The following APOs are utilized with the 1995

spinner satellite design:

• Checkout at Station

II - 4
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APOsat Shuttle

Capabilityfor LEO Retrieval
GB-OTVfrom LEO to GTO

GB-OTV from LEO to GEO

Deploy appendages
3-Axis Combination

Spinner Satellite ($115 M)
Value SM Major Reasons

yes 1.1 Insurance -1%

yes 12.5 Insurance -2%

- - Spinner design

no - Spinner design

3-Axis Satellite ($139 M)
Value SM Major Reasons

yes 1.3 Insurance -1%
- - LEO-GEO better

yes 37.2 Insurance -5%

yes 1.7 Insurance -1%

yes 38.8 STS cost/Ins. -6%

APOs at Space Station

Capability for LEO Retrieval
SB-OTV from LEO to GTO

SB-OTV from LEO to GEO

Deploy satellite appendages
Checkout of satellite

Add fuel to satellite

Capability for GEO Retrieval

Spinner Combination
3-Axis Combination

Spinner Satellite ($115 M)

Value SM Major Reasons

yes .5 Insurance -1%

yes 13.0 Insurance -2%

- - Spinner design

no - Spinner design

no - Spinner design

no - Spinner design
no - Sat. cost increase

yes 15.9 STS cost/Ins. -6%

3-Axis Satellite ($139 M)

V_lue "$'IVI Major Reasons

yes .7 Insurance -1%

- - LEO-GEO better

yes 39.5 Insurance -5%
no - Sat. cost increase

no - Sat. cost increase

no - Sat. cost increase

yes 1.3 Insurance -1%

yes 41.2 STS cost/Ins. -9%

Table II-4: Summary of APO Economics

• Fueling at Station

• Space-based OTV to GTO

• Retrieval capability from GEO

Table II-5 gives a comparison of the capital

expenditures for the spinner scenario with the

Space Station compared to the baseline spinner

scenario. The OMV/OTV fees are for use of

the Orbital Maneuvering Vehicle and the Orbital
Transfer Vehicle. A total insurance benefit of 6

points is hypothesized for this scenario. Launch
insurance is 20% for the baseline case and 14%

for the Space Station scenario. Insurance ap-
pears twice in the table, first for the upper group

of capital expenditures and second for the lower

group.

The result is a $3.5 M savings for the sce-
nario versus the baseline satellite. The Fi-

nancial Model indicates this corresponds to a

0.2 point increase in the rate-of-return (DTRR)

from 18.9% for the baseline to 19.1% for the spin-

ner scenario with the Space Station. Considering

Cost ($M 1985)

Capital Station

Expenditure Baseline Scenario

Satellite 54.3 56.9

STS Launch 29.9 21.1

Perigee stage 3.8 .7

Launch support 1.6 1.6

Mission ops. 2.6 2.3

Insurance 23.0 13.5
Total 115.1 96.1

OMV/OTV - 10.3

Station support - 3.0

Insurance ._...: 2.2
Total 115.1 111.6

Table II-5: Spinner Scenario Economics
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the uncertainties in the inputs to this calcula-

tion, this scenario has marginal value.

4.2 3-Axis Satellite Scenario

The following APOs are utilized with the 1995

hybrid 3-axis satellite design:

• Deploy appendages at Station

• Checkout at Station

• Fueling at Station

• Space-based OTV to GEO

• Retrieval capability from GEO

Table II-6 gives a comparison of the capital

expenditures for the 3-axis scenario with the

Space Station compared to the baseline 3-axis

scenario. A total insurance benefit of 9 points (a

rate change from 20% to 11%) is hypothesized

this scenario. Space Station support costs for

handling, deployment, checkout, and fueling are
estimated.

The result is a $21.5 M savings for the sce-

nario using the Space Station versus the base-
line case. The Financial Model indicates this

corresponds to a 1.4 point increase in the rate-

of-return (DTRR) from 21.9% for the baseline to

23.3% for the 3-axis scenario with the Space Sta-
tion. This indicates substantial economic value.

4.3 Assembly/Servicing Scenario

The following APOs are utilized with the 1995

hybrid 3-axis satellite payload that is incorpo-

rated into a redesigned satellite:

• Assemble satellite at Space Station

• Checkout at Space Station

• Fueling at Space Station

• Space-based OTV to GEO

• Service satellite in GEO

In order to be serviced in orbit by an Orbital

Maneuvering Vehicle (OMV) plus servicer front

end, the satellite must be designed in a different

Cost ($M 1985)
Capital Station

Expenditure Baseline Scenario

Satellite 64.6 62.5

STS Launch 35.4 16.1

Perigee stage 6.9 .6

Launch support 1.6 1.6

Mission ops. 2.6 1.6

Insurance 27.8 10.2

Total 138.8 92.6

OMV/OTV - 18.5

Station support - 3.5

Insurance _._.= 2.7
Total 138.8 117.3

Table II-6: 3-Axis Scenario Economics

manner. The concept is to have a satellite de-

sign with modules that are replaced during ser-

vicing. This leads to a less highly integrated
satellite design that consists of pieces that can

be transported separately and then assembled at

the Space Station. Thus the concept o_servicing

a satellite leads to the potential for assembly.

The servicing mission is planned to occur af-

ter nine years and to result in extension of the

satellite life by another nine years. The modular

satellite design would be 10% heavier than the

baseline satellite of the same capacity. The ser-

vicing mission would replace 40% of the mass of
the modular satellite.

Table II-7 gives a comparison of the capital

expenditures for an 18 year assembly/servicing

scenario with the Space Station compared to a

baseline scenario with two successive hybrid 3-

axis satellite launches each having a nine year
lifetime. The baseline scenario uses the 1995

3-axis hybrid satellite with 9 year lifetime and

scenario per Subsection VIH-3 of the Technical

Report. It is assumed that the second satellite
has the same cost as the first. The insurance

rate is assumed tobe the same (i1%) for assem-

bly/servicing scenario as for the baseline case.

The initia_ capital expenditure is $i0 M more

but the second launch is $45 M less than the

baseline approach. The Financial Model gives a
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Capital
Expenditure
Satellite
STSLaunch
Perigee stage

Launch support

Mission ops.
Insurance

Total

OMV/OTV

Station support
Insurance

Total

Cost ($M 1985)
Baseline Scenario

1st 2nd

68.9 34.8

15.4 8.0

.6 .3

1.6 .5

1.6 1.6

10.9 5.6
99.0 50.8

19.9 16.5

5.0 3.0

3.1 2.4
127.0 72.7

1st or 2nd

62.5

16.1

.6

1.6

1.6

10.2
92.6

18.5

3.5

2.7
117.3

Table 11-7: Assembly/Servicing Economics

Cost Rate-of-return]3-Axis Satellite ($ M) (%)

Baseline (20%) 138.8 21.9 I

Scenario (11%) 117.3 23.3 IScenario (20%) 130.5 22.5

Table II-8: Influence of Insurance Rate

Cost ($M 1985)

Cost Change Baseline Scenario Delta

Original case 138.8 117.3 21.5

OTV plus 50% 138.8 127.7 11.1
STS minus 50% 116.7 108.3 8.4

OTV minus 50% 138.8 106.9 31.9

STS/OTV -50% 116.7 97.9 18.8

rate-of-return (DTRR) approximately the same

for this scenario as for the baseline (21.07% ver-

sus 21.10%).
The conclusion is that the economics of the as-

sembly/servicing scenario are less favorable than

launching two successive conventional satellites

with the OTV. However, our satellite costs de-

rived using Price H are based on a very prelim-

inary design of a assembIable, serviceable satel-
lite. We recommend that more work be done on

design of such a satellite. In particular, relax-

ation of constraints on compactness may lead to

substantial savings in integration and test costs.

4.4 Sensitivity Analysis

4.4.1 Launch Insurance

The important point is the difference, if any, be-

tween the Space Station scenario and the base-
line case insurance rate. The scenarios assume a

6 point and a 9 point difference respectively for

the spinner and 3-axis scenarios.
If it is assumed there is no difference in insur-

ance rates due to the scenarios, the cost of the

spinner scenario increases by $8.3 M to $119.9 M,
versus $115.1 M for the baseline. The 3-axis sce-

nario increases in cost by $13.2 M to $130.5 M,
versus $138.8 M for the baseline.

The conclusion is that without insurance ben-

Table II-9: Influence of Launch Costs

efits the spinner scenario is definitely not vi-
able. The 3-axis scenario continues to show ben-

efits, although reduced greatly from $21.5 M to
$8.5 M. Table II-8 summarizes the satellite cost

and rate-of-return (DTRR) changes for the 3-
axis scenario with 20% insurance rate.

4.4.2 Launch Costs

Table II-9 summarizes the effects of some sub-

stantial changes in launch charges on system
costs. The baseline and 3-axis scenario costs are

compared for each launch cost assumption. The

scenario continues to show value regardless of the

launch cost change. The economics are very sen-

sitive to changes in OTV costs. The assumption

of STS charges being reduced by 50% also has a

large negative effect on scenario economics.

4.5 Conclusions

The spinner scenario has a small nominal value

with the hypothesized costs, but is sensitive to

changes in insurance and launch costs. This sce-

nario is judged to be not economically viable.

The 3-axis scenario shows substantial value

which continues to be positive under worst case
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insuranceand launch cost assumptions. This
scenariois judgedto beeconomicallyviable.

The assembly/servicingscenariohas equal
valueto twosuccessivelaunchesof the3-axissce-
nario. Consideringour relativelycrudeanalysis
of the satellitedesign,webelievethis scenario
haspromiseof better performanceand should
beanalyzedin moredetail.

5 Space Station Requirements

5.1 Hardware Requirements

5.1.1 Servicing and Storage Bay

The primary requirement on the Space Station

is the inclusion of a servicing/storage bay in the

initial design. An early servicing bay would be
used for unscheduled retrieval missions where a

perigee motor or ELV upper stage fails, leav-

ing the satellite in an orbit not accessible to the
OMV.

The economic and environmental advantages

of retrlewal missions to the Space Station jus-
tify the initial inclusion of this area. The servic-

ing/storage bay would later be used for storage

of satellites prior tO using th e OTV andfor stor-

ing and assembling small satellites.

The storage bay should be large enough to

accommodate up to four 1995 satellite designs

for storage and an additional area for servic-

ing. A 10 m x 10 m x 20 m volume should

be sufficient. The bay should be enclosed for

micrometeorite and passive thermal protection

which can be augmented by internal satellite

thermal systems. In addition, standard power

and communications ports should be available

so that satellites can use Space Station power
and can be monitored from inside the manned

modules. Power consumption is expected to be

in the range of 10 W to 400 W per satellite and

data rates are low (1200 b/s).

The servicing/storage bay should be located

near the OTV facility and other transporta-
tion nodes for the Shuttle and OMV. Since

the MRMS (mobile remote manipulator sys-

tem) transfer systems are predicted to be slow,
the time of transfer becomes a concern for the

power, thermal, and telemetry systems. Increas-

ing satellite batteries for this procedure should
be avoided. Another issue is the mechanical vi-

brations and oscillations during satellite trans-

fer, which may affect other operations requiring
a stable environment.

5.1.2 Automated Transfer Facilities

A universal retention system should be devel-

oped to reduce the required hardware weight on

satellite systems, and allow automated docking
and release.

Automated systems such as the MRMS (mo-

bile remote manipulator system) are needed to

transfer satellites and equipment to and from the

Shuttle, OTV, OMV, and storage/servicing bay.

Systems with a high level of articulation and con-
trol are desired to reduce demand for extra ve-

hicular activity (EVA) such as deployments and
connections.

5.1.3 Fueling Facilities -

Fueling=facilities may be required at the Space

Station. Although there is n9 economic advan-

tage i'or fueling a_t the Space Station, other fac-

tors such as Shuttle launch safety may require it,

as may APOs such as assembly. The issues sur-

rounding fueling should be examined in depth

before placing requirements on the Space Sta-
tion.

5.2 OMV Requirements

The initial use of the Orbital Maneuvering Vehi-

cle (OMV) is as a space tug to retrieve stranded

satellites from LEO as well as transfer Cargo from

expendable launch vehicles (ELVs) to the Space

Station. This requires space-basing of an OMV
in order to be available for unscheduled events

such as emergency retrieval.

The OMV would need to be attachable to a

servicing device such as the Smart Front End for

GEO servicing. This combination should have

the capability of servicing several satellites on

each mission. Methods for changing out modules

should be standardized and tested in LEO prior
to use in GEO.

II - 8
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Thereshouldbe at least two 0MVs in order
to beableto retrievea malfunctioningOMV to
the SpaceStationfor repair.

5.3 OTV Requirements

The use of the Orbital Transfer Vehicle (OTV)
gives the largest economic advantage of the

APOs evaluated. The requirements placed on

the OTV by this study are within the scope of

the capabilities required by the initial 0TV stud-
ies. Several satellites must be launched at once

in order for the relatively large capacity 0TV

to be economical. This requires a multiple pay-

load carrier (MPC) which should use a standard

retention system compatible with the Space Sta-

tion servicing bay.

The OTV should provide power and telemetry

links to the satellite while in transit. Slow spin-

ning of the OTV will assist in maintaining the
thermal environment of the satellites.

The 0TV should be capable of maintaining

accelerations of 0.1 G or less to allow appendage

deployment at the Space Station. This feature

would also be required for large communications

antennas and platforms not covered in this study.
There should be at least two 0TVs in order to

be able to retrieve a malfunctioning OTV to the

Space Station for repair. An OTV based at the

Space Station is preferred to the ground-based

alternative in order to respond more rapidly to

an emergency retrieval.

5.4 Operations and Policy

There are other requirements that the satellite

communications industry places on the Space

Station infrastructure beyond hardware or scar-

ring needs. It is important that scheduled use

of the Space Station, OMV, or OTV not be in-

terrupted. Many of the AP0s using the Space
Station will have no alternative if the service is

delayed due to higher priority government mis-

sions. The Space Station should adopt a set of

operations and policies that insure its users a

high degree of reliability.

The procedures required on the ground for

Space Station safety should become streamlined

without hindering the determination of safeness.

Present NASA safety requirements for the Shut-

tle require a large amount of paperwork and ad-

ditional test time prior to launch. The safety
requirements for the Station should be studied

far in advance so that an efficient safety regula-

tion program can be utilized.

Space Station policies should be devised so
that termination of services will not occur with-

out sufficient lead time to allow satellite man-

ufacturers to phase Space Station AP0s out of

their designs. Reduction of services due to safety

or accidents should not be placed only on the
commercial users.

6 Recommendations

6.1 Need for Space-Based OTV

The space-based Orbital Transfer Vehicle (OTV)

is recommended rather than a ground-based

OTV for several reasons. Most important is min-

imization of possible scheduling problems. Op-

erations based at the Space Station such as de-

ployment and assembly would need to be sched-

uled simultaneously with the ground launch of

the ground-based OTV. Delays occurring on the

ground (for example, due to weather) could dis-

rupt schedules at the Station due the necessity

for preparing and protecting multiple satellites.

Conversely, satellite operation delays at the Sta-

tion could delay the ground launch. The ground-

based OTV, if fueled, requires a large amount of

power to prevent cryogenic boil-off losses.

Another reason for recommending a space-

based OTV is risk. Requiring a ground launch

for every OTV launch adds risk to the system

which could affect the insurance advantage asso-
ciated with the OTV.

A concern raised by this study is the opera-

tional aspect of interfacing a ground-based 0TV
with the Station and a return vehicle such as

the Shuttle. The logistics and cost of returning,

refurbishing, and relaunching an OTV have not

been determined. A fueling system of a space-

based OTV could possibly be simplified by using

ground launched tanks that could be "snapped"

into the OTV in space. This concept could de-

crease the cost of launching and retrieving the
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entire0TV, andmaybemorecosteffectivethan
scavengingsystemswith long term space-based
fuelingdepots.

Thefinal OTV issueis thecostcomparisonbe-
tweenspace:basedand ground-basedoperation.
The obviousadvantageof space-basingis that
the OTV structuredoesnot needto be carried
from Earth to LEO for each mission. As shown

in the sensitivity analysis of Subsection VIII-5
and discussion of launch costs in Subsection VII-

2.3 of the Technical Report, economics are very

sensitive to launch cost assumptions. Perhaps
future reduction in launch costs will make this

point academic. A careful analysis of OTV costs
is needed.

The feasibility of many APOs may be im-

pacted adversely by use a ground-based OTV

due to operational constraints.

6.2 Study of Retrieval Missions

The economics of retrieval missions is discussed

in Subsection VII-5 of the Technical Report.

There can be substantial benefits in retrieval
missions and we see this to be a natural func-

tion of the Space Station from its position as a

"gateway to space" and transportation node.

We recommend that NASA sponsor a study
of the economics of retrieval missions and the

influence of retrieval on the insurance industry.

The goals of this study would be to more accu-

rately demonstrate the value of retrievability for

the satellite and to more closely define the op-

erational aspects of retrievability on the Space
Station and the satellite.

Involvement of insurance company represen-

tatives in the study is desirable, along with a

methodology to assess financial risk (defined as

the standard deviation in the rate-of-return) for

different retrieval scenarios.

6.3 Modular Satellite Design Study

A modular satellite design is required for imple-

mentation of assembly and servicing scenarios.

We recommend that NASA sponsor a study in
this area in order to stimulate the satellite man-

ufacturing industry to consider these designs.

A future NASA or government satellite should

then incorporate a requirement for serviceability

and/or assembly in order to demonstrate feasi-

bility.

6.4 Study of ELV Use

NASA has recently said that commercial

launches will be phased out of the Shuttle pro-

gram. Expendable Launch Vehicles (ELVs) will

need to be used for transport from Earth to LEO

(near the Space Station), instead of using the

Shuttle as assumed in this study: There are po-

tential impacts on launch costs and risks, on the

APOs, and on the requirements placed on the

ELV system.

A study is needed to determine the effect that

launching commercial communications satellites

to LEO on ELVs would have on the APOs, and

the requirements placed on the ELVs. The ELV

system needs to be designed to supply regular

and reliable transportation form Earth to Space
Station in order to facilitate the APOs.

6.5 Technology Developments

The following technology developments are rec-
ommended:

• Modular satellite designs

• OTV with low thrust and based in space

• RF interfaces for assemblable satellite

• Telerobotics for IVA operations and servic-

ing

6.6 Purpose of Space Station

We see the highest use of the first Space Station

as a transportation node with associated stag-

ing and assembly areas. Some requirements like

safety are of continuing concern, but the inap-

propriate placing of instruments or experiments

on the initial Station that place further difficult

requirements is to be avoided.

The value of the Space Station as transporta-
tion node will vanish if it is too difficult to use.

The commercial sector will not use something
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that placesadditionalfinancialriskson the op-
erations,suchas time delaysin on-orbit oper-
ation. For instance,a onemonth launchdelay
is equivalentto 0.4%rate-of-return(DTRR) or
$5M initial cost.
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Section III

SATELLITE RETRIEVABILITY

The problem is to demonstrate the value of

satellite retrievability and to define its opera-

tional aspects on the satellite and the Space Sta-

tion. The initial study results showed that under

certain conditions there is high value in retriev-

ing and repairing failed satellites in space. This

follow-on work uses a more sophisticated anal-

ysis to assess economic performance and risk of

various retrieval scenarios. The work is orga-
nized as follows:

1. Previous Work

2. Satellite Failure Database

3. Domsat 3 Financial Model

4. Transportation Scenarios

5. Baseline Satellite Design

6. Economic Analysis

7. Impact on Insurance

8. Requirements on Station

9. Conclusions

1 Previous Work

Previous work on retrieval missions reported in

the February 1987 Technical Report (NASA CR-

179527), Subsection VII-5, can be summarized
as follows:

• The cost of making a communications satel-
lite retrievable is low:

- $1.3 M versus $115 M spinner satellite

in-orbit cost (1.1%).

- $1.1 M versus $139 M 3-axis satellite

in-orbit cost (0.8%).

- These figures do not include the cost

of making the satellite more easily re-

pairable or the cost of the repair.

• Probabilities of a retrievable failure (satel-

lite is non-operational but intact) are 8% of
all launches based on historical data.

• Cost of retrieval operation is dominated by

transportation and insurance costs:

- Return of entire satellite to earth for

repair is usually too expensive.

- Repair in space (if possible) has a po-

tentially large economic value.

Previous analysis was based on the assump-
tion of breakdown and a fixed mission sce-

nario.

A more versatile analysis tool is needed to

assess probabilities of different missions and
to evaluate the financial risk - defined as the

standard deviation of the rate of return on

investment.

Figures III-1 and III-2 summarize retrieval

scenario costs. For LEO retrieval - repair - re-

launch scenarios, $9 M is estimated for repair at

the Space Station versus $95 M for earth repair.

For GEO retrieval - repair - relaunch scenar-

ios, $85 M (OTV) is estimated for Station repair

versus $149 M for earth repair.

The conclusion of this "static" analysis is

that in-space repair can have high value (i.e.

costs significantly less than the value of the

satellite), while return-to-earth for repair is not
cost-effective for GEO satellite failures, and is
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FigureIII-l: Low Earth Orbit RetrievalScenarios:CostEstimates
i

!

III- 2

'! Ii



FIX ON \

Figure III-2: Geosynchronous Orbit Retrieval Scenarios: Cost Estimates
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marginallypossiblefor failures in LEO. How-

ever, a more sophisticated analysis of the re-

trieval problem is required, and is the subject
of this Section.

There is an interplay between probability of

failure (which also determines insurance rates),
satellite cost, launch cost, and retrieval mission

costs which can only be analyzed via a proba-

bilistic model. For example, if there are few or

no retrievable and repairable failures, there is
little value in retrieval. Another extreme case is

when transportation costs are very high or very

low, both of which favor retrieval - either to al-

low in-space repair and reduce relaunch costs or

to save on replacement satellite costs.

2 Satellite Failure Database

Table III-1 summarizes the data given in Ap-

pendix A on historical communication satellite

failure rates and probabilities of failure. The fail-

ures are classified into five categories:

1. Initial launch stage

2. Upper launch stage(s)

3. Apogee kick motor

4. Satellite before initial operation

5. Satellite after initial operation

Note that the bulk of failures (70%) occur in the

launch stages (first three categories). For the

years 1977 through 1986, the failure rate was 17

out of 98 or 17% of the geosynchronous commu-
nications satellites launched.

Table III-2 partitions the failure statistics into

"repairable" (those failures that could be re-

trieved and repaired at the Space Station) and

"mission lost" (non-repairable). Note that these

failure statistics and this classification applies to

satellites launched from the ground direct to or-

bit (i.e. they do not use the Space Station).
Table III-3 estimates the failure statistics

for communications satellites launched via the

Space Station. The estimated total failure rate

is lower (11% versus 17%) due to the use of a

more reliable OTV, deployment of appendages

III- 4

Type of Failure

Initial launch stage

Upper launch stage(s)

Apogee kick motor
Sat. before checkout

Sat. after checkout

Totals

Failures as a

Percentage of
Failed All

launches launches

12 2.0

29 5.1

29 5.1

12 2.0

18 3.1

100 17.3

Table III-l: Historical Failure Statistics

at the Space Station, and checkout at the Space

Station. However, the relative amount of failures

judged to be repairable goes down due to the

fact that initial operations at the Space Station

would have eliminated the easily fixed problems.

3 Domsat III Financial Model

Appendix C gives a description of the DOM-

SAT III financial model developed by Princeton

Syneryetics. A summary is as follows:

• It is a Monte Carlo model which runs many

cases in order to take into account the prob-
abilities of different events in a scenario.

The results are based on the probabilities
and costs of the different outcomes of the

mission.

• Inputs to the Model:

- The mission is broken down into seg-

ments with probability of success and

cost for each segment.

- Insurance is based upon expected loss

times a multiplier (1.2) to allow for

overhead. (The expected loss is

based on the input probability of suc-

cess for each operation and the fail-

ure/recovery paths.)

• Operation of Model:

- A mission model is selected: (i.e. ini-
tial launch of three satellites and re-

1 I I



FailureCategory
Initial stagefailure
Perigeestagefailure
Apogeemotormalfunction
Satellitefailure(beforeIOC)
Satellitefailure(after IOC)

Totals

Probabilityof Failure(%)
Repairable Mission Total

Failure Lost Failures

.0 2.0 2.0

2.8 2.3 5.1

3.6 1.5 5.1

1.4 .6 2.0

2.9 .2 3.1

11.7 6.6 17.3

Table III-2: Estimate of Repairable and Non-Repairable Failures (Earth---*GEO Launch)

Failure Category

Earth to Station

OTV to GEO

Satellite failure (before IOC)

Satellite failure (after IOC)
Totals

Probability of Failure (%)
Repairable Mission Total

Failure Lost Failures

1.0 6.0 7.0

1.0 .0 1.0

.5 .5 1.0

1.0 1.0 2.0

3.5 7.5 11.0

Table III-3: Estimate of Repairable and Non-Repairable Failures (Launch Via Space Station)
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trieval - repair at the SpaceStation
for repairablefailures).

- 1,000different casesof eachscenario
arerun. An independentchoiceof suc-
cessor failurefor eachmissionsegment
is madebasedon theinput probability
of successof eachoperation.

- The result of eachcaseis the rate of
return on investment.

- The standarddeviationof the rate of
return aroundthe meanrateof return
for all casesis a measureof the finan-
cial risk.

I'".................. ":',.... [;7"q.... ,,

J

I'w ....... _ ................... "1
I .m." P/L I

_, OTV
a i

i| "LVSl

LVll2 LV|I

o'rvlie • oTv
,,LC._.,: I.v,,

Figure III-3: Transportation Scenario 1: Direct

Placement Using Ground-Based Assets

• Results:

- The mean rate of return (also referred

to as the expected internal rate of re-

turn or IRR) must be high enough to

justify the mission.

- If the standard deviation of the rate of

return is high, the mission is risky; if
it is low, there is low economic risk.

4 Transportation Scenarios

A number of non-retrieval and retrieval cases

based on different transportation scenarios will

be analyzed and compared. The transportation

scenarios used for analysis of the retrieval cases

are illustrated in Figures III-3 through III-7 (also

described and illustrated in Appendix C). Two

transportation scenarios are used for each case:

one for initial payload (P/L) placement opera-

tions and the other for P/L maintenance/repair

operations.

It is assumed that a transportation system

consists of a generic launch vehicle (LV) that

contains two stages (LVS1 and LVS2) and a

generic orbital transfer vehicle (OTV). (Each of

these stages may actually contain other stages

but can be considered from a reliability, cost and

recovery point of view as being lumped into a

single stage.)

p....o..o.o.o........_ .... _o--p

a° o- °-_------- ....... .-.

LVO=
!

't
P/L_

LVI3

Figure IH-4: Transportation Scenario 5: Direct

Placement Using Space-Based Assets

PIL

..... .........

(filled) _ (plUOlnllroMIrlelrvl°erkit) _, (lllod)

........ .........
,'_% LVII|

_PILR

LVS2 :
REPAIR _ LVtll LVll2

REPAIR

KIT

!

Figure III-5: Transportation Scenario 7:

On-Orbit Repair Using Space-Based Assets
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Figure IH-6: Transportation Scenario 8: Return

to Earth for Repair Using Space-Based Assets

4.1 Transportation Scenario 1

Scenario 1 (Figure III-3) consists of a reusable

LV (note that LVS1 may be reusable or expend-

able) or LV and OTV or expendable LV and

OTV for initial P/L placement and/or replacing

failed P/Ls. Scenario 1 may be used in conjunc-

tion with Scenario 7 for the placement portion

of the replace-return-repair mission. If reusable

launch vehicles are considered, OTV and P/L

checkout failures in LEO may be corrected when
and if returned to Earth.

4.2 Transportation Scenario 5

Scenario 5 (Figure III-4) consists of a reusable

or expendable LV for transporting P/Ls to the

Space Station. The OTV, based at the Space

Station, is used to place the P/L into final orbit.

The OTV may be reusable or expendable. It is

assumed that P/L and OTV checkout failures

can be corrected at the Space Station.

................. Io-II,,',F.......•
(fnllod)

| I

...... t8 t|llon ,, P_2 f .................... -_ etetlon {* PILl)]--'o"

_' .............. i s
i

RF.PAliq PARTI I i

LVI2 PARTS

I
WLVSl IF

Figure III-7: Transportation Scenario 9: Re-

place, Return to Station for Repair Using

Space-Based Assets

4.3 Transportation Scenario 7

Scenario 7 (Figure III-5) consists of a reusable

LV, LV and OTV, or expendable LV and OTV

for performing on-orblt P/L repair. The OTV

and OMV are located at the Space Station. It

is assumed that the OMV is capable of docking

with specifically configured P/Ls. If repair can-

not be accomplished, replacement will be accom-

plished either via Scenarios 1 or 5 (as specified).
It is assumed that OTV checkout failures can

be corrected at the Space Station. A repair-kit

is delivered from the Earth to the Space Sta-

tion and, upon mission completion, returned to
Earth.

4.4 Transportation Scenario 8

Scenario 8 (Figure IH-6) consists of a reusable

OTV for acquiring and returning failed P/L to

the Space Station. The P/L is then returned

to Earth for repair using a reusable LV. It is

assumed that the OMV is capable of docking

with specifically configured P/Ls. Replacement

is performed (prior to returning failed P/L) us-

ing an appropriate specified scenario. It is as-
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sumed that OTV checkout failures can be cor-

rected at the Space Station.

4.5 Transportation Scenario 9

Scenario 9 (Figure III-7) consists of a reusable

LV and OTV transportation system for placing

a P/L into orbit and returning a failed P/L in

the same OTV flight. A P/L is stored on the

Space Station and repair is performed on the

Space Station. An initial flight is required to

place a P/L into inventory on the Space Station.

5 Baseline Satellite Design

The baseline satellite design used for the cases is
the 1995 Ku-band satellite described in Subsec-

tion IV-3.2 of Vol. II, Technical Report (NASA
CR179527), and summarized in Table III-4. De-

sign features are as follows:

• 3-axis satellite.

1,200 kg beginning-of-life mass

3,000 W end-of-life power.

24 each 50 W Ku-band transponder pay-
load.

• The satellite has a grapple fixture for re-

trieval by the OMV plus remote manipula-

tor system.

This is a garden variety satellite size and type,

appropriate for 1995 launch. A spinner design is

not used since it is more difficult to transport

(due to thermal problems) and retrieve (due to
docking problems). Either the 1995 Ku-band or

hybrid satellite could have been selected for anal-

ysis, and the retrieval results would not be signif-

icantly different. However, a much smaller (and

less costly satellite) is expected to have less ben-

efit and a much larger (and more costly) satellite

to have more economic benefit from retrieval op-
erations.

Two variations of the baseline design are used:

(a) launched from earth to GEO without Space

Station; and (b) launched via the Space Station

and using the APO scenario described in Subsec-

tion VIII-3 of Vol. II, Technical Report (NASA
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CR 179527). The primary difference is that the

baseline (b) has these features:

• 5% less satellite cost.

• Lower tranportation costs (use of OTV).

• Higher reliability (due to operations at the

Space Station and use of the OTV).

6 Economic Analysis

Six non-retrieval and retrieval cases, based on

the different transportation scenarios, are ana-

lyzed using the Model and the relative economic : :_

performance is compared. All costs are given in

1985 dollars. The cases are identified by letter
as follows:

A. Launch from earth direct to GEO of satellite

design (a) using transportation scenario 1.

(The Space Station is not used.)

B. Launch from earth to GEO via the Space i

using satellite design (b) and trans- !Station

portation scenario 5 '_

C. Launch to GEO via Space Station (trans-
portation scenario 5). The OTV is used for

in-orbit repair missions (transportation sce-

nario 7) as required.

D. Launch to GEO via Space Station (trans-

portation scenario 5). The OTV is used to

replace a failed satellite with a new satellite,
and a failed satellite is returned to earth for

repair (transportation scenario 8).

Eo Launch to GEO via Space Station (trans-

portation scenario 5). The OTV is used to

replace the failed satellite with new satellite,

and the failed satellite is repaired at Space

Station and placed in inventory (transporta-

tion scenario 9).

F. Launch from earth direct to GEO (trans-

portation scenario 1). The OTV is used for

in-orbit repair missions (transportation sce-

nario 7).

This Section is organized by cases as follows:
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Manufacturer& model:
Baselinesatellitename:
EIRP (Conus):
Lifetime:

On-board switching:
Launch vehicle:

Frequency band and bandwidth:
- receive:

- transmit:

Antenna

- type:
- number:

- size:

-- mass:

- feed array:

- coverage (3 beams):

- polarization:

Transponders
- number:

- power:
- bandwidth:

- TWTA redundancy:

- receiver redundancy:
- mass:

- dc power:

Spacecraft

- type:

- size (bus)"
- mass, BOL:

- power (EOL) at summer solstice:

- primary power:
- batteries:

- thermal control:

- attitude and station keeping:

- attitude pointing accuracy:

- apogee motor:

RCA Americom, K2
Satcom K2

46 dBW

10 yr

Among coverage regions

Ariane 4 or STS/PAM D2

Ku-band, 500 MHz
14.0-14.5 Gttz

11.7-12.2 Giiz

Offset parabolic, dual gridded
1

2.44 m

29 kg
2 each 80 elements

CONUS and E gz W CONUS

II and V, linear

24

50 W
54 Miiz

5 for4

6 for3

232 kg

2,522 W

3-axis stabilized

1.57 x 2.18 x 1.77 m

1,200 kg

3,000 W

Solar cells (thin Si)

4 NaS, 150 Ah

IIeat pipes

IIydrazine thrusters (ACTS)
=t=0.07°

Solid propellant

Table III-4: Baseline Satellite Characteristics
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1. BaselineCases(A & B)

2. RepairIn Orbit Cases(F & C)

3. Replace,Retrieve,RepairCases(D & E)

4. ParametricAnalysis:

- Insurance
- Launch costs

5. Summary of Results

6.1 Baseline Cases (A _z B)

The methodology provides for all "new" retrieval

- repair cases to be compared with a baseline

non-retrieval case in order to accurately assess

the difference in economic performance.
Case A, the "business-as-usual" launch from

earth to GEO of satellite design (a) using trans-

portation scenario 1, is the baseline for compar-
ison with Case F.

Case B, the launch from earth:to GEO via

the Space Station using satellite design (b) and
transportation scenario 5, is the baseline for

comparison with Cases C, D, and E.

6.1.1 Baseline Case Results

Table III-5 summarizes the parameter values in-

put and output by the Model for the two baseline

cases A and B. (Only the more significant param-

eters that change between cases are tabulated;

the Domsat III model has many more input pa-

rameters as described in Appendix C.) Not only
does Case B have a significantly higher expected

internal rate-of-return (IRR), but the variation

(standard deviation) in the IRR is much less.

Launch costs are based on the Shuttle pricing

formula (old cost method). OTV costs assume
simultaneous launch of two satellites.

6.1.2 Comparison With C&L Model

The comparison of the DOMSAT III model re-

sults with the Financial Model results in Vol. II,

Technical Report (NASA CR-179527), is given

in Table III-6. The original Financial Model

developed by Coopers £_ Lybrand (C&L) gives

both IRR (internal rate-of-return) and DTRR

Ill - 10

___ine CasesParameter B

P/L Costs: ($M)

Recurring 48.4 46.4

Non-recurring 24.2 23.2

Launch Costs: ($M)
Earth-LEO 37.0 17.7

LEO-GEO 9.5 20.9

Reliability: (%)
Placement 77.3 87.1

Rate of Return (%)

Expected IRR 9.9 16.3

Standard deviation 4.8 1.7

Table III-5: Baseline Economic Performance

(dual terminal rate-of-return), while the DOM-

SAT Model gives IRR only (but also provides

the standard deviation of the IRR).

The "adjusted" C&L Model uses input values
that are similar to the DOMSAT Model. The

differences between the original and adjusted
C&L Model inputs are as follows:

• Effective insurance rates (25% vs. 28.4% for

Case A; 12.2% vs. 16.2% for Case B).

• Use of new 1987 tax law.

Slight change in cost spreading functions.

• Slight change in satellite costs.

Comparing IRRs in Table III-6 shows differences

of several points between the original and ad-

justed C&L Models.

More significant is the lack of agreement be-
tween the adjusted C&L Model and the DOM-

SAT Model. The DOMSAT IRRs are 55% of

those for the (adjusted) C_:L Model; however,
the ratio of ELV to OTV IRR is the same for

both models.

There are several reasons for the lower IRRs

of the DOMSAT Model:

• The DOMSAT Model explicitly considers

failures and accurately figures the IRR

| |':



Rate of Return (%)

Model (case) ...C.as.e A Case B

C&L Model: (original)
DTRR 18.8 21.3

IRR 19.9 25.7

C_L Model: (adjust.)
DTRR 17.7 22.5

IRR 17.3 28.9

DOMSAT III Model:

IRR 9.9 16.3

Table III-6: Model Comparisons

based on input reliability data. The DOM-

SAT Model also takes into account the rev-!

enue loss from failed transponders during

time delays resulting from launch failures.

The C&L IRR only applies to successful

missions: the IRR for unsuccessful missions

is approximately zero after reimbursement

of loss by insurance. Thus the IRR is higher
for the C&L Model.

• The DOMSAT Model applies the entire net

(positive) cash flow to paying off debt. The

C&L Model is has a fixed repayment sched-

ule and reinvests any surplus cash. The
result is that the DOMSAT Model IRR is

lower.

• The DOMSAT Model includes the capital

cost of a satellite spare placed in inventory
whereas the C_:L model does not.

Thus the differences between the two models are,

in general, explainable. Each model provides
consistent results on a relative basis for all cases

considered.

6.2 Repair In Orbit

The two in-orbit repair cases, F and C, are ana-

lyzed. When satellites fail, they are repaired in

orbit by using the OTV to carry an OMV plus

servicer and repair kit to GEO. The repair mis-
sion shares OTV costs with another mission to

launch a satellite. The repair kit is brought up

from earth to the Space Station. An input "re-

pairability" parameter is used to take into ac-

count the fact that failed satellites may not be

repairable. When satellites fail and are not re-

pairable, new satellites are launched.

An analysis of Cases F and C shows no signif-
icant benefit for in-orbit repair. This is due to a

combination of high reliability, few incidents of

failure that can be successfully repaired in orbit,

and the high cost of in-orbit repair.

6.2.1 Case F (Launch Scenarios 1 _ 7)

Initial placement of the satellite is based on

transportation scenario 1 (Figure III-3), the use

of an ELV to place a design (a) satellite in GEO.

The OTV is used for an in-orbit repair mission

as per transportation scenario 7 (Figure III-5).

Potential things to be repaired, assuming a

sophisticated servicer with dexterous hands, in-

clude appendage deployment and initial turn on

problems with some equipment.

Table III-7 summarizes the case parameters

and compares with the baseline Case A. There

is a slight improvement in IRR with decrease in

standard deviation. The difference is not enough

to argue for a change in the business-as-usual

Case A. However, the financial risk (standard

deviation of the IRR) is reduced and could lead

to a preference for Case F.

The non-repair decision factor of 75% reflects

the judgement that 75% of the in-orbit failures

are judged to be unrepairable in-orbit and there-

fore no repair mission would be launched. The

reliability of repair factor of 87.1%.judges that

87% of in-orbit repair missions launched are suc-

cessful. The overall probability of a failure being

successfully repaired is 22%.

6.2.2 Case C (Launch Scenarios 5 &: 7)

Initial placement of the satellite is based on

transportation scenario 5 (Figure III-4) launch

via the Space Station of a design (b) satellite to

GEO. The OTV is used for in-orbit repair mis-

sions (transportation scenario 7, Figure III-5).

The non-repair decision factor of 90% reflects
the statistics that 90% of the in-orbit failures are

judged to be unrepairable in-orbit and therefore
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Parameter
P/L Costs:($M)

Recurring
Non-recurring

LaunchCosts:($M)
Earth-LEO
LEO-GEO

Repair Mission: ($M)
Earth-LEO

LEO-GEO

GEO-LEO

LEO-earth

P/L Repair Costs: (%)
Checkout

Payload

Reliability: (%)
Placement

Repair

Non-repairability (%)

Rate of Return (%)

Expected IRR
Stindard deviation

Case

A

(Baseline)

48.4

24.2

37.0

9.5

w

77.3

9.9

4.8

F

(Repair)

46.4

23.2

37.0

9.5

1.3

30.3

.1

5.0%

77.3

87.1

75.0

10.2

4.1

Table III-7: In-Orbit Repair of ELV Launched
Satellite

Parameter

P/L Costs: ($M)

Recurring

Non-recurring

Launch Costs: ($M)
Earth-LEO

LEO-GEO

Repair Mission: ($M)
Earth-LEO

LEO-GEO

GEO-LEO

LEO-earth

P/L Repair Costs: (%)
Checkout

Payload

Reliability: (%)
Placement

Repair

Non-repaira.bility (%)

Rate of Return (%)
Expected IRR
Standard deviation

C ase

. fc(Baseline) ,(Repair)

46.4 46.4

23.2 23.2

17.7 17.7

20.9 20.9

- 1.3

- 33.4

-- .1

- 13.0%

87.1 87.1

- 74.3

- 90.0

16.3 15.9

1.7 1.7

Table III-8: In-Orbit Repair of OTV-launched
Satellite

no repair mission would be launched. This factor

is high in part because initial launch Scenario

5 uses deployment and checkout at the Space

Station to minimize repairable problems.
Table III-8 summarizes Case C which is com-

pared with Case B. A slight decrease in IRR is

noted with no change in financial risk (standard

deviation of IRR). The difference in IRR is not

large enough to argue for a change from the base-
line Case B.

6.3 Replace, Retrieve, Repair

Table III-9 summarizes the retrieval and repair

Cases D and E and compares them with the

baseline Case B. These cases are based upon

the use of OTVs based at the Space Station.

New satellites are delivered to the Space Station

and placed into GEO via the space-based OTVs,

III - 12
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Whensatellitesfail a sparesatellitemaintained
in inventoryon the SpaceStationis placedinto
GEO and the failed satellite returnedvia the
OTV to the SpaceStation.

Repair at the SpaceStation involvestaking
the satelliteinto a closedarea.Almostanything
canbe repaired,the sameasonearth,with the
exceptionof propellantproblems,

No significantchangein return-on-investment
or financial risk is noted,and thereis no com-
pelling argumentfor the retrieval, repair, and
relaunchscenarios.

6.3.1 Return-to-earth Repair (Case D)

Case D returns the failed satellite via the Space

Station to the ground for repair and subsequent

return to inventory (transportation scenario 8,

Figure III-6). There is a low probability of non-

repairability (5%) and a high (92.2%) reliability

of repair since repair is on earth.

The $6 M for transportation from LEO to

earth is an estimate based upon sharing a cra-
dle used for delivery of a satellite to the Space

Station ($2 M) and NASA fees ($4 M estimate)

for transport of the satellite to earth. (There is

at present no Shuttle fee structure for return of

items from LEO to earth.)

6.3.2 Repair at Space Station (Case E)

Case E uses transportation scenario 9 (Fig-

ure III-7) and repairs the failed satellite on the

Space Station. The repaired satellite is then

placed into inventory on the Space Station. The

probability the satellite cannot be repaired on

the Space Station is 30% (considerably higher

than the ground repair 5%). When satellite fail-

ures are not repairable, new satellites are placed

into orbit via the use of the Space Station and

the OTV. The reliability of repair is judged to

be somewhat lower at 60.3% since the repair is

carried out at the Space Station.

6.4 Parametric Analysis

The DOMSAT III Model is used to perform sen-

sitivity analyses for the following cases:

1. Different insurance rates and non-insurance

2. Variation in launch costs

6.4.1 Impact of Insurance

The Model is used to simulate the six cases (A-

F) previously analyzed, but utilizing different in-

surance rates plus the "no insurance" (i.e. self

insurance) option.

The insurance multiplier (i.e. multiplier of

expected loss) establishes the cost of insurance.

For example, a multiplier of 1.25 indicates that

the cost of insurance is 1.25 times the expected

loss. If the launch reliability is 0.9 and the to-

tal loss is $100 M, then the insurance cost is

$12.5 M. The insurance multiplier is varied from

1.25 to 2.0 for these cases, and 1,000 Monte Carlo
simulation runs were made for each case.

The results for the baseline Cases A and B

are summarized in Table IH-10 and Figure III-8.

Table III-10 illustrates the impacts of the insur-

ance alternatives on expected payback period,

maximum expected investment, expected net

present value, standard deviation of net present

value, expected return-on-investment (ROI1),

and standard deviation of ROI (financial risk).

Figure III-8 illustrates the insurance impacts in

terms of expected ROI and standard deviation
of ROI.

Figure III-9 compares the options of not tak-

ing insurance (i.e. self insurance) versus taking

insurance (insurance multiplier = 1.25) for the

six cases A, B, C, D, E, and F. Not taking in-
surance increases both the return on investment

and financial risk. The range of variation in ex-

pected ROI and risk is much larger (for the same

range of variation in the insurance multiplier) for
Case A than it is for Case B. This is the result

of the lower reliability of launch operations with
Case A.

It is concluded that the increased reliability

associated with operations involving the Space

Station have the potential to reduce insurance
costs associated with communications satellite

business ventures. This potential reduction is

based on the assumption that in the long term

insurance rates will be related to reliability. The

insurance cost for Case A during the 15 year

1Note that ROI and IRR are used interchangeably

III - 13



Parameter

P/L Costs:($M)
Recurring
Non-recurring

LaunchCosts:($M)
Earth-LEO
LEO-GEO

RepairMission:($M)
Earth-LEO
LEO-GEO
GEO-LEO
LEO-earth

P/L RepairCosts:(5{)
Checkout
Payload

Reliability: (%)
Placement
Repair

Non-repairability.(%)
Rateof Return (%)

ExpectedIRR
Standarddeviation

Case

B

!Baseline).

46.4

23.2

17.7

20.9

87.1

16.3

1.7

D

(Ground

repair)

46.4

23.2

17.7

20.9

25.2

4.4

6.0

10.0

87.1

92.2

5.0

15.6

1.9

E

(Space

repair)

46.4

23.2

i

17.7

29.0

5.1

2.0

11.0

87.1

60.3

30.0

16.1

1.6

Table III-9: Replacement, Retrieval, and Repair of OTV-Launched Satellite

Performance Measure

Expected payback period (yr)

Max. expected investment ($M)

Net present value, DR=20% ($M)

Expected NPV ($M)

Standard deviation NPV ($M)

Rate of Return (%)

Expected IRR
Standard deviation

Case A

Insurance Multiplier No
2.0 1.5 1.25 insure

13.4 12.2 11.8 11.6
476.5 433.0 412.4 388.5

-167.2 -135.8 -120.9 -99.4

31.0 28.7 27.7 65.0

6.3 9.1 9.9 14.4

10.6 5.6 4.8 5.0

Case B

Insurance Multiplier [ No

2.0 1.5 1.25 [ insure
10.5 10.3 10:2 10.1

333.1 319.5 312.5 301.8

-61.1 -51.1 -46.2 -38.6

22.3 21.6 21.3 36.5

15.1 15.9 16.3 17.1

1.8 1.7 1.7 2.6

Table III-10: Impact of Insurance Rates and the No-Insurance Alternative
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planning horizon is on the order of $107 M
whereas the cost for Case B is on the order of

$38 M, both with an insurance multiplier of 1.25.

The ratio of these costs is approximately 2.8

and remains the same if the insurance multiplier

changes.

The question of increased risk perception due

to Space Station operations is very subjective. It

is likely that insurance companies will be slow to

accept the improved reliability and mission mode

alternatives created by the Space Station and re-

lated operations. Perceptions of increased risk

resulting from estimating reliability less than

that achieved may result in increased insurance

multipliers for certain space operations.

If the insurance multiplier for Case B in-

creased to 1.5 to compensate for increased per-

ceived risk, the insurance cost becomes $46 M,
and the ratio of Case A insurance cost to Case B

cost is reduced to approximately 2.3. The im-

pact, of course, would be somewhat less if only

insurance increases on certain operations were
considered.

6.4.2 Variation in Launch Costs

Cases A, B, E, and F are analyzed to deter-

mine the impact of changes in launch costs.

Earth to low earth orbit (LEO) costs are varied
q-20%, and correspond to the Shuttle or the first

stage(s) of an ELV. LEO to GEO costs are var-
ied :k50%, and correspond to the OTV or upper

ELV stage(s).

For Cases A, B, E, and F, the following trans-

portation cost change scenarios are compared to
the base case:

1,

.

3.

.

Shuttle (ground to LEO) cost is increased
by 20%

are increased or decreased by the indicated per-

centages. The blanks in the table indicate that
the ROI values for these cases are too low to be

calculated by the simple algorithm we are us-

ing to transform the probability distributions of

NPV (at the five different discount rates) into

the ROI probability distribution. (This is a pro-

gramming detail that was not "fixed" since the

NPV numbers are calculated and give equivalent
information.)

Figures III-10 and III-11 plot the sensitiv-

ity of the return-on-investment (ROI) results

to changes in earth-LEO (SS) and LEO-GEO

(OTV) costs. It is interesting to note the in-

creased sensitivity of the non Space Station cases

(A and F) in relation to financial risk.

A more meaningful measure indicating sensi-

tivity is the change in NPV relative to the base

cases considered. Table III-12 gives the change _

in NPV ($M) for the different launch cost sce-
narios relative to the standard launch cost case.

A sensitivity coefficient can be defined to indi-

cate the change in value (i.e. A NPV) that re-

sults from a 1 percent change in earth-LEO or

LEO-GEO transportation cost. The unit of the

coefficient is SM per percent change.

Table iii-13 gives these sensitivity coefficients.
Cases A and F are more sensitive to earth-LEO

cost changes and Cases B and E are more sensi-
tive to LEO-GEO cost changes.

LEO to GEO cost is increased by 50%

Table III-11 summarizes the results. The

earth-LEO _20% and LEO-GEO :k50% indi-

cates the transportation costs for the segment

6.5 Summary of Results

Table III-14 summarizes the input parameters
and Table III-15 summarizes the results for

Cases A through F. Figure III-12 plots the net

present value of the alternatives relative to the
assumed discount rate. There is little difference

between the baseline Case A and the Case F re-

pair in orbit. Likewise there is little difference

between the baseline Case B and the Cases C,
Shuttle (ground to LEO) cost is decreased D, and E repair scenarios. This is further shown

by 20% by Table III-16 where the value of all cases con-

LEO to GEO cost is decreased by 50% sidered are shown relative to Case A in terms of
incremental net present value. Based on these

results, there is no reason to choose a repair

scenario over the associated baseline non-repair
case.
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L

Case

A:

Base case

Earth-LEO, +20%

Earth-LEO, -20%

LEO-GEO, +50%

LEO-GEO, -50%
B:

Base case

Earth-LEO, +20%

Earth-LEO, -20%

LEO-GEO, +50%

LEO-GEO, -50%

E:

Base case

Earth-LEO, +20%

Earth-LEO, -20%

LEO-GEO, +50%

LEO-GEO, -50%

F:

Base case

Earth-LEO, +20%

Earth-LEO, -20%

LEO-GEO, +50%

LEO-GEO, -50%

Expected

Payback
Period

(yr)

11.8

12.5

11.3

12.2

11.5

10.2

10.4

10.0

10.6

9.7

10.2

10.4

10.1

10.7

9.7

12.0

13.6

11.4

13.2

11.6

Maximum

Expected
Invest.

($M)

412.4

443.5

381.3

432.6

392.7

312.5

325.4

299.6

346.8

278.3

313.0

326.0

300.1

347.6

278.5

414.9

446.1

383.7

435.5

394.7

Expected
NPV

(DR=20%)

(,M)

-120.9

-143.7

-98.2

-135.7

-106.5

-46.2

-55.7

-36.7

-71.4

-20.9

-48.O

-57.6

-38.5

-75.1

-21.0

-124.3

-147.6

-101.1

-141.4

-107.5

Std. Dev.

NPV

(DR=20%)

(*M)

27.7

27.7

27.7

27.7

27.7

21.3

21.9

20.6

23.1

19.5

19.8

20.6

19.1

22.3

17.8

28.0

29.8

26.3

29.1

27.2

Expected
ROI

(%)

9.9

12.4

11.6

16.3

15.6

17.1

12.0

18.3

16.1

15.4

16.9

13.9

18.3

10.2

12.4

6.0

11.9

Standard

Deviation

ROI

(%)

4.8

2.6

3.1

1.7

1.8

1.6

2.1

1.5

1.6

1.8

1.5

2.2

1.4

4.1

2.5

11.5

2.8

Table III-11: Impact of Launch Cost Variations on Cases A, B, E, and F

Launch

Segment

Earth-LEO

Earth-LEO

LEO-GEO

LEO-GEO

Cost Change

(%)
+20

-20

+5O

-50

Case

Table 111-12: Change in Net Present Va/ue ($ M) Relative to Standard Launch Costs
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Launch Segment

Earth-LEO

LEO-GEO

Table III-13: Sensitivity Coefficients ($M per percent change) for Launch Costs

Parameter

P/L Costs: ($M)

Recurring

Non-recurring

Launch Costs: ($M)
Earth-LEO

LEO-GEO

Repair Mission: ($M)
Earth-LEO

LEO-GEO

GEO-LEO

LEO-earth

P/L Repair Costs: (%)
Checkout

Payload

Reliability: (%)
Placement

Repair

Non-repairability (%)

_ase

Table III-14: Summary of Inputs

Performance Measure

Expected payback period (yr)

Max. expected investment ($M)

Net present value, DR=20% ($M)

Expected NPV ($M)

Standard deviation NPV ($M)

Rate of Return (%)

Expected IRR
Standard deviation

A] B
11.8 10.2

412.4 312.5

-120.9 -46.2

27.7 21.3

Case

I C I D ] E I F

10.2 10.3 10.2 12.0

315.4 316.6 313.0 414.9

-52.5 -56.1 -48.0 -124.3

22.0 24.1 19.8 28.0

15.9 15.6 16.1 10.2

1.7 1.9 1.6 4.1

Table III-15: Summary of Results
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C ase

A 0

B 75

C 68

D 65

E 73

F -3

Value of Alternatives Relative to Case A

Expected Change Std. Dev. of Change

in NPV ($M) in NPV ($M)

0

35

35

37

34

39

Table III-16: Value of Alternatives Relative to Case A (Comparison at 20% Discount Rate

Figure III-13 compares the alternatives by

showing the tradeoff between the expected

return-on-investment (ROI) and the financial

risk (defined as the standard deviation of the

ROI). Again the cases under comparison are

heavily clustered, with a significant difference

between the expected values and risk of the two

baseline cases (A and B). However, it is now seen

that repair Case F lowers financial risk by 0.7%,

a significant amount. Thus Case F is preferred
to Case A.

The large difference between Cases A and

B accentuate the results of the initial study -

launching a satellite via the Space Station signif-

icantly improves expected rate-of-return on in-

vestment. Furthermore, it is seen that financial

risk is dramatically reduced.

7 Impact on Insurance

An evaluation is given based on the insurance

industry interviews of potential on-orbit opera-

tions such as assembly of satellites, retrieval of

ailing satellites, and repair at the Space Station

and relaunch. The discussion is organized into

four parts:

1. Potential for Rate Reductions

2. Perceptions of Increased Risk vs. Benefits

3. Requirement for Retrievability

4. Other Issues

Appendix D contains the results of insurance

company interviews on which the results of this
subsection are based.

7.1 Potential for Rate Reductions

Ultimately, once a data base of experience is

built up and past losses are neutralized, insur-

ance rates can be expected to match reliability.

Present day reliabilities suggest 20% insurance
rates with rates in the low teens foreseen for fu-

ture launches using the space-based OTV, once

reliability has been proved.

A more important point may be the potential

increase in insurance capacity as transportation

to and from the Space Station becomes insured

as "fundamental transport" and not as an exotic

spacecraft.

A future satellite launch insurance scenario is

likely to be very different from today with a se-

ries of tiered rates for different operations:

i. Transport from earth to the Space Station

ii. Assembly, handling operations at the Space
Station

iii. Transport by low thrust OTV to final orbit

The insurance industry sees the possibility of the

aggregate risk for such a scenario being 10%, ac-

companied by a significant reduction in the risk
of total loss.
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7.2 Increased Risk Versus Benefits

The insurance industry likes the idea of passing

through the Space Station on the way to GEO

for the previously stated reason of risk spreading

among component operations. However, the in-

surance industry has historically been concerned

about the introduction of new technologies. The

Space Station can temper this concern by uti-

lizing as much proven, existing technology as

is consistent with safety, performance, and cost
considerations.

One effective method for assuring the satellite

insurance industry that the satellite assembly

and repair capability is reliable and cost effective

is to use it for actual assembly, repair, deploy-

ment, and retrieval of uninsured payloads such

as future generations of GOES, TDRSS, or other

government satellites. Although this approach

may appear to be risky for the U. S. Government,

it can be considered a key step in the creation of

the satellite servicing facility. Once this scenario

has been tested and satisfactorily demonstrated,

the insurance industry may be willing to provide
reduced rates.

Until the assembly and repair of satellites be-

comes commonplace, customers can expect in-

surance rates to fluctuate significantly in re-

sponse to both successes and failures. : :

It is important to keep the insurance industry

involved throughout the long planning stages of
this initiative. New issues can then be raised and

clarified throughout the entire process. Concur-

rence from the insurance industry from the out-

set can help to structure the initiative to avoid

insurance problems once the facility is opera-
tional.

It will require a major selling job on the part

of NASA and the rest of the U.S. government

to promote this scenario and convince satellite

manufacturers, satellite owners and operators,

and the insurance community that on'orbit as-

sembly, repair, and upgrade of satellites is desir-

able from both a technical and a cost standpoint.

7.3 Requirement for Retrievability

From the insurance company viewpoint, there

is no possibility of requiring that all satellites

have a retrieval capability. There may be a small

incentive in the form of higher rates for those
satellites that cannot be retrieved. It is clear

that the insurance industry is a follower and not

a leader of technology.

7.4 Other Issues

The major other issue we do not address is that

of third party liability insurance. This issue is

not unique to satellites - it applies to all com-

merciai space activities - and must be addressed

by NASA for commercial uses of the Space Sta-
tion to be viable.

8 Requirements on Station

Physical and operational requirements are im-

posed on the Space Station by satellite retrieval

operations. This subsection catalogs these re-

quirements and recommends to NASA changes

required in the Space Station infrastructure nec-

essary to accommodate these operations. The

subsection is divided into three parts:

1. Physical requirements

2. Operational requirements

3. REcommendations to NASA

8.1 Physical Requirements

Physical requirements for retrieval and repair op-
erations are the same as those outlined in Sec-

tion IX of the original study (Vol. H - Technical

Report, NASA CR179527, February 1987). The
facilities required are summarized as follows:

• Space-based OTV and OMV.

• Storage area for satellites and unassembled

modules. Area needs passive thermal con-

trol, and micrometeorite and molecular oxy-

gen protection.

• Servicing area for satellites.

• Fueling capability.

• Checkout facilities for satellites.
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MRMS (mobile remote manipulator sys-

tem) with satellite handling capability.

"Smart" servicer capable of replacing snap-
on modules.

• Multiple mission capability in order to com-
bine missions to GEO.

8.2 Operational Requirements

The following frame of reference is used to de-

velop the operational requirements associated

with the assembly, servicing, and repair of com-
munications satellites:

Satellite construction has changed consid-

erably from current methods and the idea

of and techniques for assembling spacecraft

on-orbit has been accepted.

Satellites are transported to the Space Sta-

tion in separate pieces using either the

Space Shuttle or ELVs. The satellite pieces

are shipped in some type of cargo container.

Satellite pieces are assembled and tested us-

ing automation and robotics techniques in a

working area on the Space Station.

Once assembled, deployed, and tested, the

satellite is transported from the Station to
GEO via a low thrust OTV. Once at GEO

the satellite would be tested again to insure

proper functioning prior to release by the
OTV.

Satellites in need of repair or refurbishment

could be retrieved by the OTV from GEO,

returned to the Space Station for repair, and
then returned to GEO.

Based on this frame of reference, the discus-

sion of operational requirements is divided into
four business issues:

1. Control

2. Procedures

3. Liability

4. Costs

8.2.1 Control

The first and perhaps most important issue is

who has control of the satellite and its parts at

different times and who has final authority for

decisions. There are a number of possible an-
swers:

• The satellite owner.

• The satellite manufacturer - who may be

different from the owner or who may have

control delegated to them by the owner.

• NASA - who may have physical possession

of the satellite and who may have the only

personnel present during operations.

• An operator of the service facility - who

may be the facility owner/operator or a
NASA contractor.

• The launch vehicle provider.

• A third party investor or other person with
different interests in the satellite.

Clearly, there are a number of possibilities and

control may change from time to time as the sit-

uation changes. For example, if a condition de-

velops where the satellite threatens the safety of

the Space Station, NASA could assume control

and take the required action to save the Station.
Of concern to us here is what conditions ex-

ist where control is transferred from one entity to
another. As can be assumed from some of the ex-

amples above, control can be transferred volun-

tarily such as where an owner may agree to place

the equipment under the control of the manufac-

turer until delivery or, in an extreme emergency,

where it can be agreed in advance that control

reverts to the party (most likely NASA) required
to take action to avoid a disaster.

From a business point of view, owners are

unlikely to relinquish control over the asset if

there is substantial risk of loss of proprietary
data or other information that would result in

loss of a competitive advantage or technical lead;

situations that could result in significant and

costly delays; or their equipment being involved

in some activity where it is put into a position

of potential loss or damage.
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Therefore,with respectto theowneror manu-
facturerof asatellite,theywoulddesireto main-
tain controloverthe equipmentat all timesdur-
ing the initial launch,final assemblyandtesting
aswellastransportationto a higherorbit. They
wouldbewilling to relinquishcontrolunderspe-
cific circumstancesthat wereclearlydefinedin a
contractualdocumentandfollowedspecificpro-
visionsas to circumstances,liability and when
controlis returnedto theownerormanufacturer.

Of all non-technicalconcernswith regardto
operationalrequirements,the factor of control
is mostimportant. The owneror manufacturer
will desireto do asmuchaspossiblethemselves
andwill viewtheSpaceStationassimplyaplace
to do work (muchasthey viewedthe Astrotech
satelliteprocessingfacility in Florida). Theyare
responsiblefor the satellite'sdeliveryto thecus-
tomer in anefficientmanner(on time and fully
operational)andmostlikelyhaveseverecontrac-
tual penaltiesif they fail to perform.They will
beveryreluctantto transferthat controlto any
other party without also transferringthe same
contractualliability to whomeverassumescon-
trol,

This issueof controltakesongreatsignificance
whentheentity assumingcontrolis NASAoran-
othergovernmentagency.NASAhashistorically
operatedon a "bestefforts"basisandaccepted
nopenaltiesfor its failure to performassuming
it hadmadeits besteffort. While NASAwasthe
only gamein town in the launcharea,suchan
arrangementwasall that couldbegotten,so it
wasaccepted.Now, this is no longerthe case
and, in particular with regardto encouraging
the useof the SpaceStationservicingcapability,
maynot beadequateto encouragecustomersto
changefrom ELVsandthe traditional construc-
tion methods.

'NASAmustlook carefullyat anyrequirement
to assumecontrol duringan assemblyor repair
mission,underwhat conditionsthat wouldoc-
cur, whatguaranteeswouldbemadeto the cus-
tomer,andwhat levelof responsibilitywouldbe
assumed.Obviously,to the degreeNASA only
providesa placeto do work rather than takes
chargeof the operations,it wouldbe beneficial
to the customerfrom a control point of view if

NASAwerenot involvedat all.

8.2.2 Procedures

The procedures issue deals with how various

operational requirements are carried out. The

satellite industry is quite familiar with the

various procedures developed to integrate and

launch a satellite on the Shuttle. They will an-

ticipate that similar procedures documents will

be prepared for satellite component part trans-

portation to the Station, assembly, test and

transport to GEO.

In preparing the new operations procedures

NASA should be cognizant of changes needed

from previous procedures that were either non-

responsive to user needs or overly biased toward

making things simpler for NASA at the expense

of user time and resources. While it is not possi-
ble to have various satellite manufacturers focus

on a future scenario involving Space Station, it

is possible to get them to reflect on some of the

problems they faced in placing satellite payloads
aboard the Shuttle. It is hypothesized that sim-

ilar issues would be prevalent in dealing with a

Space Station system.

The key issues for satellite owners/operators
are as follows:

1. Cargo versus transportation

2. Excessive paperwork requirements

3. Contr0] by the owner/operator

4. Scheduling

Procedures to deal with all these issues will have

to be developed and put into place. The key

appears to be to start thinking about the prob-

lems early and work with potential users toward

mutually acceptable solutions. =....

8.2.2.1 Cargo vs. transportation. The
first issue concerns the conflict between those

persons with responsibility for the cargo and

those with the responsibility for the transporta-

tion. There will inevitably be issues that arise

where needs in one area cause problems for an-

other area. To the degree that components for
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satellitescan be deliveredto SpaceStation as
part of a regularlyscheduledlogisticsflight (on
either Shuttleor ELV), it maybeeasierto ad-
dresssomeof theseproblemssincethe satellite
itself will not be a driving factor in the launch
schedule.

However,in becomingpart of the "regular

cargo" on a flight, the satellite manufacturer will

have an entirely new set of constraints and activ-

ities with which to deal. The key issue in under-

standing the operational requirements for launch

that should be considered by the manufacturer is

the packaging of the component parts for assem-

bly on orbit to minimize problems in the payload

integration procedures.

8.2.2.2 Excess paper work. The problem

with excess paper work appears to be endemic

to working with government agencies. Again de-

signing components with flight requirements in

mind should help. Also, the ability to separate
potentially hazardous material such as fuel and

pyrotechnic devices to specific and perhaps bulk

shipment flights may help to streamline proce-

dures. Again, having components on standard

logistic flights and flights aboard ELVs may also

be very beneficial from a paperwork perspective.

8.2.2.3 Control by owner/operator. The
control issue was raised and discussed in detail

in the previous paragraph and need not be dealt

with in detail here. The key issue is the desire by

the owner/operator to have access to the equip-
ment at all times.

8.2.2.4 Scheduling. The issue of scheduling

is important since time equals money for the

satellite owner/operator. Assembly and testing

on-orbit means that the question of schedule re-

liability becomes even more important. Other

schedule related issues of importance include the

following:

• Will there be adequate storage space for ex-

tra components to be taken to orbit and be-

come part of an inventory of parts?

• Once the assembly is initiated, how will

robotics or other assembly facilities be

scheduled?

How will test procedures be designed, veri-

fied, modified, and conducted in support of

the assembly and testing process?

What happens to the schedule if a part is

not available, fails during testing, or needs
to be modified or replaced?

8.2.3 Liability

Section III-6 has dealt with the insurance issues

associated with the assembly and testing on or-
bit activity. Suffice it to say that there will be

concern in all quarters about who has liability

when various activities are being conducted.

However, fear of liability must not become a

strangle hold on progress. It is our opinion that

the questions of liability that now dominates the

space industry is a passing issue that will be re-

solved in an acceptable manner in the near fu-

ture. Liability issues will have to be resolved for

all Space Station users such as materials science

users, earth and ocean observation users, and sci-

ence users as well as for satellite assembly and

testing. The issues are generic and therefore the

satellite area will benefit (or suffer) from what
ever generic solutions are developed for the prob-
lem.

The suggested course of action is to work

closely with the insurance industry and various

government agencies concerned with this issue

to make sure the requirements of the satellite

industry receive the attention that is deserved.

8.2.4 Costs

The issues of cost and pricing were also discussed
in some detail in Subsection V-5.2. With each

operational requirement, it must be considered

that there are costs associated with the activity

and appropriate pricing policies must be devel-

oped. The issue is also somewhat generic and
will be addressed for the entire Station. The

same recommendation as was made for liability

issues above applies here as well.
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8.3 Recommendations to NASA

The physical and operational requirements on

the Space Station are summarized below along

with recommended changes in the Space Station
infrastructure to accommodate retrieval and as-

sembly operations.

Physical requirements are as summarized in

Subsection III-6.1, and mainly consist of

suitable facilities at the Space Station

for transport, storage, and simple servic-

ing/repair of satellites.

Transport requirements include the capabil-

ity of the OMV and/or OTV to retrieve re-

mote satellites, and to combine such mis-

sions as launches retrievals, and/or servic-

ing in order to reduce costs.

NASA control of the satellite should be kept

to the minimum required by safety and se-

curity.

NASA procedures should consider simplicity

and cost savings for the user.

Cargo requirements to the Space Station

should be integrated with assembly/use re-

quirements on the Station.

Paper work requirements should be mini-
mized.

Scheduling by NASA must recognize that time

is money for commercial operations.

Liability insurance issues must be resolved

for operations at the Space Station.

A pricing policy for space operations should

be developed by NASA that is self-

consistent and consistent with long term

goals to encourage commercial space opera-
tions.

9 Conclusions

The conclusions are based upon a business sce-
nario of a commercial communications satellite

with certain characteristics. Results may be

different for satellites with significantly differ-

ent payloads. In particular, inexpensive satellite

may be "throw away" designs, while more ex-

pensive satellites may be worthly of great effort

to retrieve and repair.

The same general point can be made about the

cost of space transportation and operations. For

example, if space operations are very expensive

or unreliable, it will be better to launch another

satellite rather than attempt retrieval.

9.1 Use of Space Station

The DOMSAT III financial model analyzed fi-

nancial performance and confirmed the result of

the initial study that there can be a substantial

economic benefit to using the Space Station for
launch of commercial communications satellites.

The DOMSAT Model explicitly considers fail-

ures based on input reliability data and com-

putes return-on-investment as well as financial

risk (defined as the standard deviation of the

return-on-invest ment).

Figure III-14 shows the significant difference

in performance between the two cases:

A. Business-as-usual satellite launch direct

from earth to geosynchronous orbit.

B. Space Station scenario consisting of launch

from earth to the Station, operations at the

Station, and use of the OTV for transporta-

tion from low earth orbit to geosynchronous
orbit.

Not only is return-on-investment improved

(16.3% vs 9.9%), but also financial risk is re-

duced (1.7% vs 4.8%) by using Case B, the Space
Station launch scenario. To summarize:

Improved return-on-investment occurs by

using APOs at the Space Station versus the
business-as-usual ELV launch of the satel-

lite. The DOMSAT Model shows signifi-

cant improvement in rate-of-return (16.3%

vs. 9.9%) for the Space Station versus the
ELV scenario.

Reduced financial risk is obtained by use of

the Space Station launch scenario versus the

III - 26

I :!



2o

O

5

_=_._

• Space Station scenario

I

I Launch direct to GEO •

I

I

1 2 3 4

Financial Risk (% ROI)

Figure III-14: Improved Financial Performance

of Space Station Scenario

I

>1

!

5

business-as-usuai ELV launch of the satel-

lite. This is due to the increased reliability

of the Space Station and OTV operations
versus the business-as-usual launch.

9.2 In-Orbit Repair

Repair scenarios have no significant value

for the satellite scenarios analyzed (Tables

III-7 and III-8). This is due to a combi-

nation of high reliability, few incidents of

failure that can be successfully repaired in

orbit, and the high cost of space operations.

Our analysis applies to generic communica-
tions satellite scenarios and concludes that in

general satellites do not benefit from repair-in-

space operations. However, it is important to

realize that in-orbit repair is highly desirable for

selected cases - i.e. for the "easy" cases to reach

and/or fix, and for certain high value payloads

that may be irreplaceable within the time con-
straints of their mission.

9.3 Replace, Retrieve, Repair

These repair scenarios also have no value

of significance to satellite economics for

both ground-based and Statlon-based repair

scenarios (Table III-9). This is due to a

combination of few repairable failures and

the high cost of space transportation.

Again it must be realized that certain specific

mission cases may gain greatly from retrieve, re-

pair, and relaunch operations.

9.4 Impact on Insurance

Insurance reduces risk with a slight reduc-

tion in ROI for the Space Station scenar-

ios (Figure III-9). For the less reliable non-

Station scenarios, risk remains high with

and without insurance - the main impact of
insurance is to reduce return-on-investment.

Insurance rate has little effect on ROI

for the Space Station scenarios. The insur-

ance rate has a great effect on financial risk

for the non-Station scenarios (Figure III-8),

with increased insurance rates causing in-
creased risk.

Insurance rates will not decrease until re-

liability of new operations has been demon-
strated.

An increase in insurance capacity is ex-

pected as transportation between the earth

and Space Station becomes a more routine

matter with cargo manifested and satellite

components perhaps spread among several
loads.

9.5 Impact of Launch Costs

Launch costs directly influence ROI for
all cases. The Station scenarios are more

sensitive to upper stage (OTV) costs while
the non-Statlon scenarios are more influ-

enced by the initial stage (or Shuttle) launch

costs (Table III-13).

Non-Station scenario risk varies rapidly

with changes in launch costs (Figures III-

10 and III-11).
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9.6 Requirements on Space Station

Physical requirements are the same as rec-

ommended in the original study technical

report. However, the provision for OTV

docking with a free satellite undergoing re-

trieval would greatly increase the flexibility

of retrieval operations. This would require

a delicate maneuvering capability as well as

cold gas thrusters to avoid damage to the
satellite.

Operational requirements should emphasize

reduction in paper work and the fact that

time is money for commercial operations.

NASA control of the satellite should be kept

to the minimum required by safety and se-

curity.

9.7 Follow-On Work

Since the studies to date and resulting conclu-

sions are based upon a specific business scenario

and satellite configuration, it is recommended
that the robustness of the results and conclu-

sions be established.

i. Additional :sensitivity analyses be per-

formed using the current business scenario:

-Establish the financial impacts of

transportation system and satellite re-

liability and cost.

- Based upon the sensitivity results, es-
tablish within the selected business

scenario the conditions that are re-

quired for retrieval to be cost effective.

2. Additional business _scenarios and satellite

configurations be developed and sensitivity

analyses performed:

- Establish the financial impacts of the

scenarios, transportation systems, and

satellite configurations.

- Based upon the sensitivity results, es-
tablish within the selected business

scenarios the conditions that are re-

quired for retrieval to be cost effective.
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Section IV

USE OF EXPENDABLE LAUNCH VEHICLES

This section addresses Task 6, and presents an

evaluation of the impacts of Expendable Launch

Vehicles (ELVs) on the Activities, Procedures,

and Operations (APOs) of the original study

Technical Report. The initial report was started

before the Challenger disaster and assumed use

of the Shuttle for satellite launches. However,

recent changes in Shuttle use policy require an

evaluation of the use of Expendable Launch Ve-

hicles (ELVs) for transport from earth to the

Space Station and to geosynchronous orbit.

The work is divided into five parts:

1. ELV Database

2. Impact of ELVs on APOs

3. ELV Operations

4. ELV Policy

5. Conclusions

1 ELV Database

1.1 Introduction

A database of available and developing expend-

able launch vehicles is given in Appendix B in

order to allow a comparison of ELVs and Shut-

tle costs and operations, Launch capacity and

cost to both LEO and GTO are given in order

to allow a comparison for both business-as-usual
and APO scenarios. Tables IV-1 and IV-2 sum-

marize existing launch vehicle performance for

Low Earth Orbits (LEO) and Geosynchronous

Transfer Orbit (GTO).

A cost analysis of various vehicles applica-

ble to this study was made by soliciting cost
estimates from the manufacturers. It should

be noted that the costs stated in Appendix B

are estimates of a business-as-usual launch when

a significant operating level has been achieved.

Recent launches on different vehicles made by

commercial satellites have generally been slightly

higher. This is offset by the fact that estimated

costs for the Shuttle are also significantly higher

than those used in the initial study.

A description of many of the launch vehicles

and fairing sizes are given at the end of Ap-

pendix B. The size of the vehicle fairing size was

not considered as a factor for this study with

the exception of the American Rocket Industrial

Launch Vehicle (ILV) which is too small for a

general launch. The ILV is included in the cost

impact and APO sections because it may become

a possible vehicle for satellites being launched

from the Space Station due to redesign or by

launching only part of an assemblable satellite.

1.2 ELV Cost Impact

In order to determine the best launch vehicle for

a satellite, the following factors are considered:

• Shape of satellite.

• Volume of satellite.

• Mass of satellite.

• Orbit placement requirements.

• Launch vehicle cost.

• Launch vehicle availability.

This study only examines the maximum pay-

load mass capability and associated cost per kg

as parameters to compare with the Shuttle. Of

course, the Shuttle has a payload capacity ex-

ceeding other launchers as well as other servicing
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CompanyName
AmericanRocket
Arianespace

ChinaGreatWall
Industry Corp.

GeneralDynamics

Japan
Martin Marietta

McDonnell Douglas

Proton

Space Services Inc.

Launch Vehicle

Industrial L. V.

Ariane 3

Ariane 4

Long March 2

Long March 3

Long March 2-4L
Atlas G

Atlas G/LPF
Atlas H

Atlas E

ALV

H-2

Titan 3

Titan 4 (Centaur G')
Delta 3920

Delta 6920

Delta 7920

Enhanced Delta 2

Delta 2 MLV

D-l, SL-13

Conestoga IV- 1

Orbit Description
Altitude Inclination

(km) (o)

400 28.5

200 0

800 0

200 0

800 0

300 63

(Sun synchronous)
3O0 28.5
90 28.5

400 28.5

400 28.5

4O0 28.5

4OO 28.5

400 28.5

400 28.5

400 28.5

160 28.5

320 28.5

320 28.5

320 28.5

480 28.5

40O 28.5

400 28.5

(Sun synchronous)

Launch

Capacity

(kg)

1,814

5,800

3,450

8,000

4,500

1,500

3,600

9,000

6,123

6,577

1,996

136

45,360

8,000

14,061

17,690

3,452

3,787

4,246

4,781

4,536

5,171

20,000

1,542

Fairing Size

Dia. Length

(m) (m)

2.3 4.6

(14 m 3)

(14m 3)

3.7 9.6

3.7 9.6

3.1 5.0

2.7 5.3

3.7 i0.0

2.9 8.4

3.7 9.4
9 ?

? ?

? ?

3.7 12.0

4.4 12.2

4.4 12.2

2.4 ?

2.5 4.8

2.5 4.8

2.8 6.2

2.8 6.2
? ?

4.2 7.5

1.2 4.6

NASA Space Shuttle (10/87) I 160 28.5

Space Shuttle (10/87) ] 400 28.5 25,700 [ 4.513,800 4.5

10.0

10.0

Table IV-l: Launch Vehicle Description and Launch Capacities to Low Earth Orbits

? <i_ i , :
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Company Name

Arianespace

China Great Wall

General Dynamics

Japan
Martin Marietta

McDonnell Douglas

Proton

Space Services Inc.

Launch Vehicle

Ariane 3

Ariane 4

Long March 2-4L
Atlas G

Atlas G/LPF
H-2

Titan 3

Titan 4 (Centaur G')

Titan 4 (dual Star 63F)
Delta 3920

Delta 6920

Enhanced Delta 2

Delta 2 MLV

D-l, SL-13

Conestoga IV-1

Orbit Description
Altitude Inclination

(krm) (°)
GTO 0

GTO 0

GTO (28.5 equiv.)
GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

GTO 28.5

(Sun synchronous)

Launch

Capacity

(kg)

1,390

4,200 3.7

4,720 3.7

2,930 3.7

2,360 2.9

2,180 3.7

2,000 3.7

5,670 4.4

9,072 4.4

5,646 4.4

1,284 2.4

1,447 2.5

1,819 2.8

1,814 ?

2,000 4.2
544 1.2

Fairing Size

Din. Length

(m) (m)

(14 m 3)
9.6

9.6

10.0

8.4

9.4

12.0

12.2

12.2

12.2

4.8

6.2

?

7.5

4.6

Table IV-2: Launch Vehicle Description and Launch Capacities to Geosynchronous Transfer Orbit

features that allow an electrical system checkout

prior to ejection and the capability to abort the
launch on orbit if needed. These factors are not

considered for this study.
There are two basic classes of ELVs avail-

able for launching satellites into Geosynchronous

Earth Orbit (GEO):

• Low earth orbit (LEO) launch vehicles; and

• Geosynchronous transfer orbit (GTO)
launch vehicles.

The LEO launch vehicles require that the GEO

satellite has an additional propulsion system (the

upper stage) to perform a perigee maneuver and

another propulsion system to perform the apogee

maneuver, thus completing the transportation

of the satellite from LEO to GEO. The Space

Shuttle, Martin Marietta "Titan" series, and the

American Rocket "ILV" are all examples of this

type. These are also the candidates for launch-

ing satellites to the Space Station to enable the

APOs described in the initial study Technical

Report.

The GTO launch vehicles require only an

apogee stage to put the satellite into GEO af-

ter separation from the ELV. Examples of this

type include the General Dynamics "Atlas" se-

ries, McDonnell Douglas "Delta" series, and the

Arianespace "Ariane" rockets. Due to its equa-

torial launch site, the Ariane is launched into

an equatorial plane orbit and cannot economi-

cally reach the inclined orbit of the Space Sta-
tion. The other domestic launch vehicles could

be modified to deliver a payload near the Space
Station.

Figure IV-1 gives a launch cost comparison for

ELVs and the Shuttle for optimized delivery to

LEO or a Space Station orbit. Cost and capacity

values for the ELVs built for GTO delivery are

estimated performance and cost values obtained

from the ELV manufacturers. It is apparent that

the ELVs built for GTO are not as competitive

for launching payloads to the Space Station.

An interesting point is the cost/kg of the

American Rocket ILV. If its predicted launch

costs are valid (the ILV is not yet in operation),

the launching of small payloads into LEO may
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be an option for satellitesusingthe SpaceSta-
tion APOs. The ILV is especiallyattractive if a
largenumberof launchescanbemade,possibly
bringing the transportation insurance industry

into consideration for a larger insurance capabil-

ity and possibly lower rates.

Figure W-2 is a plot of the optimum ELV

launch cost/kg versus maximum capacity for

launches to Geosynchronous Transfer Orbit

(GTO). Some examples (Titan, Shuttle) are

included with currently available upper stages

(Morton Thiokol Star 63F or Centaur Gt) to

compare the Space Station APO scenarios with

business-as-usual scenarios. The cost per kilo-

gram of these examples includes the upper stage

cost. It is interesting to note the closeness in

cost/kg to GTO for the three major Ameri-

can ELVs - Titan, Delta 2 and Atlas/Centaur.
This appears to be a product of the competi-

tion among commercial launchers as opposed to

the government subsidized launchers such as the

Shuttle, Ariane, and Long March. The Con-

estoga rocket has yet to enter the commercial

market and, considering its high launch cost/kg,

is not considered useful for further study.

The Ariane rockets have one primary advan-

tage compared with the other GTO launchers.

Due to their equatorial launch site, they place

payloads in a transfer orbit that is inclined

7 ° to the equatorial plane as opposed to the

28.5 ° inclination achieved by launches from Cape

Canaveral. This implies that the satellite apogee

stage requires approximately 25% less fuel than
that of a satellite launched from an American

ELV or Shuttle. This fact is taken into account

in Figure W-2.

Tables W-3 and IV-4 list launch costs for ELVs

to LEO and GTO respectively. The price per

unit mass to LEO and GTO are optimized costs
for each of the vehicles. This cost can be used

only for satellites whose mass/volume is opti-

mized for a specific launch vehicle, or a payload

that can have additional, usable payload added

such as would be possible with an ELV Space

Station delivery system. The business-as-usual

(BAU) column in Table W-4 refers to the launch
of a 1,176 kg dry mass satellite. Note that the

Titan 4 GTO cost includes an upper stage, either

one Centaur G I or two Morton Thiokol Star 63F

for an optimal dual launch. The Titan 4 or Shut-
tle BAU satellite satellite launch uses a PAM D2

or equivalent upper stage which is smaller than
the Star 63F or Centaur.

The launch costs in the BAU column of Ta-

ble IV-4 reflect the fact that most systems are

not optimized for weight on the few available

ELVs. The Ariane value again reflects a compa-

rable cost for an identical GEO delivery. These

costs are used to compare a BAU ELV scenario
with the Shuttle BAU and the ELV-delivered

Space Station APO scenarios. The BAU scenar-

ios use the 1,176 kg (dry mass) satellite. Only
4 systems - Shuttle, Atlas Centaur, Titan and

Ariane - are capable of launching a satellite of
this size.

The Ariane can launch the BAU satellite for

approximately $2.3 M less than the Shuttle, and
use of the Atlas or Titan increases launch costs

by $8.8 M and $14.6 M respectively. If these

three non-shuttle launch costs are averages, the

result is a $7 M (5%) increase compared to the

Shuttle, with a standard deviation of $8.8 M

(6%).

2 Impact of ELVs on APOs

2.1 Introduction :

The_]mpact _ of using ELvs to deliver payloads

to the Space Station for APOs is dependent

on more factors than simply ELV launch costs.

There are other direct costs that will be incurred

to interface with the Space Station for man-
controlled or automatic rendezvous as well as

possible insurance issues. There are also techni-

cal issues such as rendezvous, scheduling, and de-

pendence on the Station that must be resolved.

2'2 .... Rendezvous With Space Station

The only launch vehicle that is currently planned

to interface directly with the Space Station is

the Space Shuttle. In addition to the Shuttle,

the Space Station is equipped with an Orbital

Maneuvering Vehicle (OMV) that is used as a

"space tug" for external payloads and can oper-

ate around the Space Station. There are two pri-
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Launch Launch
Capacity Cost

Launch Vehicle (kg) ($/kg)

American Rocket - ILV 1,814 4,400

China Great Wall- Long March 3 3,600 5,500

General Dynamics - Atlas Centaur G 6,123 8,300

Martin Marietta- Titan 4 17,690 5,650

McDonnell Douglas - Delta 2 5,171 7,100

McDonnell Douglas - Delta 6920 3,787 9,700

Space Services - Conestoga 1,542 9,700

Average ELV $/kg - 7,200

[ Space Shuttle (dual launch) 25,700 3,850

Table IV-3: Launch Costs to Low Earth Orbit

Launch _.r.e.hicle/(Upper Stage)

Ariane 4, 0 ° inclination

Ariane 4, 28 ° equivalent incl.

China Great Wall - Long March 3

Gen. Dynamics - Atlas/Centaur G

M. M. - Titan 4 (Centaur G')

M. M.- Titan 4 (two Star 63F)

McDonnell Douglas - Delta 2

McDonnell Douglas - Delta 6920

Space Services - Conestoga

Average ELV' $/kg

Base

Price

($M)
80

80

20

51

1O0 + 50 t

100 + 16 t

37

37

15

Launch Costs

Launch Per unit BAU

Capacity Mass Satellite

(kg) ($/kg) ($/kg)

4,200

4,200

1,400

2,360

9,072

5,646

1,814

1,447
544

19,000

16,900 17,200

14,300

21,600 22,000

16,500

20,500 24,500

20,400

25,500

27,500

- 20,700 21,230

[ Shuttle with shared launch (PAM D2) [ - ! 13,800 ] 20,200 18,200 ]

t Cost of Centaur G' or Star 63F upper stage.

Table IV-4: Launch Vehicle Costs to Geosynchronous Transfer Orbit
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mary reasons for limiting the number and types

of vehicles that can operate around the Station:

Safety. The first reason for limiting access is

for safety. The safety requirements for the

Space Station state that a spacecraft not un-

der human control cannot approach within

the designated Space Station safety zone.

Control from inside the Station is required

for any vehicle to dock with the Station.

Contamination. The second reason is to re-

duce any contamination and to avoid a

build-up of an atmosphere around the Sta-
tion.

Assuming that the Shuttle is not available for

commercial satellite delivery to the Space Sta-

tion, three options remain:

. Design an ELV system that can rendezvous

with the Space Station and deliver a payload

directlyly to it.

o Use the OMV to rendezvous with the pay-
load in orbit and then deliver it to the Sta-

tion using the OMV.

3. Do not use the Station (or APOs). Use an

ELV to launch directly to orbit.

Option 1 requires that a new navigation, con-

trol and guidance system be built into an ELV

stage. Such a system would allow close ap-

proach to the Station, and then could be con-
trolled from within the Station for the final ren-

dezvous. The safety and contamination issues
must be taken into consideration for this ren-

dezvous stage. This would become an added cost

for the ELV launch and would most probably

exist on only one stage whose design would be

funded or at least controlled by NASA.

Option 3, of course, is what we have defined
as a business-as-usual satellite launch scenario

that is used to compare economic benefits of the
APOs.

Option 2 is the most probable method, at least

during the early usage of the Station, that ELV

payloads will be taken to the Space Station. The
use of the OMV creates two cost increases to the

original Shuttle supported APOs.

OMV usage fees will be charged to ren-

dezvous, dock, and retrieve the ELV pay-
load.

The interface with the OMV depends on

the type of payloads and the type of carrier

Used for the payloads, and is placed accord-

ingly. The carrier could be the ELV shroud,
an enclosed canister that is removed at the

Station, a lightweight structure that does

not provide physical or thermal protection,

or may simply be an attachment point on a

satellite that is ejected from the ELV once
in orbit.

2.3 APO Cost Impacts

The cost for launching payloads to the Space

Station with ELVs built for LEO (AR ILV and

Titan IV) shows an average increase (using op-

timized launches) of $1,175/kg over the Shuttle.

This corresponds to a total increase of approx-

imately $1.3 M per satellite. If an estimate of

$3 M is adopted for OMV use fees for the pay-

load retrieval, the total increase becomes $4.3 M

per satellite. This cost does not include any de-

sign or launch costs for an OMV retrievable pay-

load shroud or carrier (perhaps $1 M). This total

is less than the average increase in BAU launch

costs due to use of ELVs (an increase of $7 M).
This shows that the APO values in the initial

study report remain valid or could even show a

slight increase.

The payload fairing for the Titan IV, which

is the only LEO-optimized vehicle large enough

for an assembled satellite, would need to be en-

larged in order to carry a volume of satellites

commensurate with its payload mass. The fair-

ing would probably be equal to the entire upper

stage length of the Titan without the Centaur

stage. If this is done, 7 or 8 "business-as-usual"

satellites could be launched to the vicinity of the

Space Station at one time.
This launch scheme would raise the launch

costs to approximately $10,600/kg or a net in-

crease of $7.7 M per satellite over the initial APO
values. This $0.7 M difference between ELV

Space Station delivery and ELV BAU launch is

only a small percentage (0.5%) of the total esti-
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matedsatellitecostand is well within ouresti-
mate of the cost "noise". Although this large
numberof launchesis not in agreementwith
our statedinsurancepolicies,it offersa method
to approximatea moreconservativecostingfor
non-optimizedELV launchesthat may occur
with newELVsor with amixedpayloadof satel-
lites andSpaceStationsupplies.

Thereareotherindirectcostimpactsthat may
be incurreddue to usingELVs. The most no-
ticeableof theseis insurance.A slight increase
in insurancecostsmaybe incurredby the ELV
to OMV to SpaceStationtransfer.This canbe
offsetby a demonstratedsafelaunchpattern of
multiplepayloadsfor assemblyat theSpaceSta-
tion. SubsectionIV-4, ELV Policy,discussesin-
suranceandother factors, ....

3 ELV Operations

3.1 Introduction

This subsection gives the normal sequence of

events that take place for different business-as-
usual ELV missions and the scenario for deliv-

ering payloads to the Space Station with ELVs.

The actual activities, procedures and operations

(APOs) presented in the initial report are not

affected beyond the satellite delivery.

3.2 Business-As-Usual Scenario

There are two different types of Business-As-

Usual (BAU) scenarios possible with ELVs. The

majority of ELVs deliver a satellite (or pair

of satellites) to Geosynchronous Transfer Or-

bit (GTO).The satellite-tl_en uses its ownsys-

terns to transfer into Geosynchronous Earth Or-

bit (GEO). Some ELVs (Titan 3 and 4) can

launch- payloads into GTO =(us|ng the Centaur

stage) or into Low Earth orbit (LEO) where the

satellite is responsible for providing its own orbit

transfer capabilities.

3.2.1 GTO Delivery Scenario

1. ELV and payload are mated on ground.

2. ELV launched from ground.

3. ELV control into GTO.

4. Satellite deploys from shroud;

pendage deployment may occur.

ment may include spin-up.

some ap-

Deploy-

5. Satellite uses an expendable or integral

stage (apogee stage) to transfer to GEO.

6. Second satellite deploys from shroud (Ari-
ane only); satellite transfers to GTO.

7. Satellite performs orbit maintenance, de-

ploys remaining appendages.

8. Satellite is tested on-orbit.

9. Satellite begins normal Operation.

3.2.2 GTO Delivery Scenario

1. ELV and payload are mated on ground.

2. ELV launched from ground.

3.

4.

ELV c0ntrol int%LEO.

Satellite deploys from shroud; some ap-

pendage deployment may occur. Deploy-

ment may include spin-up. If not, satellite

will usually spin itself up for perigee maneu-
ver.

5. Satellite uses an expendable (such as PAM

or Star) stage to transfer into GTO. _

6: Second satellite (if there) is deployed and

follows same steps as first satellite.
..... J ;=:

7. Satellite uses an expendable or integral

stage (apogee stage) to transfer to GEO.

8. Satellite performs orbit maintenance, de-

ploys remaining appendages.

9. Satellite is tested on-orbit.

10. Satellite begins normal operation.

IV-8
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3.3 New ELV Scenarios Using APOs

The use of ELVs does not change most of the

APOs at the Space Station. The Shuttle APOs,

of course, are not performed with the exception

of a possible retrieval scenario. Three scenarios

are given here that apply to regular use of ELVs.

1. Retrieval scenarios could be performed

by the Shuttle or by the OMV and Space
Station. This scenario is not considered a

regular operation but is included because

the benefits of performing such a mission,

if needed, are large.

2. ELV LEO delivery scenario is the ex-

pected mission that will allow the Space
Station APOs to come into existence with

ELV delivery of payloads. This APO in-

volves using BAU ELVs (Titan and Amer-

ican Rocket ILV) to launch into LEO or-

bit and have their payloads retrieved by the

OMV. This is the simplest scenario of the

two used for regular delivery to the Sta-

tion and uses existing or currently develop-

ing hardware.

3. ELV Space Station delivery scenario

requires that the ELV have an additional

stage to perform a rendezvous maneuver to

the Space Station. Docking can be per-

formed either by this stage or by the MRMS
system aboard the Station. This scenario is

seen as an advanced procedure for the Space

Station. The technology for this type of

maneuver is regularly performed by the So-

viet space program for their MIR Station.

Therefore, because of the possible benefits

in time savings for the Station crew, it is

recommended that this type of mission be
examined in more detail.

3.3.1 Retrieval Scenarios

For this scenario to take place, a failure must

occur in LEO within the orbit capability of the

Space Shuttle or OMV . This could be a failure

in a third stage (either the ELV stage or a sep-

arate perigee stage), a failure of a LEO delivery

ELV shroud, or other failure that abandons the

satellite in LEO. Two different scenarios are pos-
sible, one for a Shuttle retrieval and another for

an OMV retrieval. The Shuttle retrieval scenario

appears to be less practical due to its large mis-

sion costs as was apparent in the initial study.

Shuttle Retrieval Scenario

. Failure of the third stage, the shroud de-

ployment, or another retrievable failure oc-

curs. An emergency retrieval plan com-
mences.

. Shuttle is launched from Space Station with
retrieval kit. Current estimates for retrieval

mission readiness is 6+ months.

3. Shuttle rendezvous and grapples "safed"
satellite or ELV with RMS or via ELV.

4. Satellite/payload is removed from shroud

and/or carrier (if necessary).

5. Satellite is checked out and repaired (if pos-

sible and necessary).

6. If an expendable stage is usable, replace into
orbit and relaunch.

, If expendable stage is not usable or satel-

lite is not repaired, dock and secure satel-

lite]payload in cargo bay and return to
Earth.

8. Repair/test satellite on ground and re-
launch.

OMV Retrieval Scenario

.

,

3.

.

Failure of third stage, shroud deployment or

other retrievable failure occurs. Emergency

retrieval plan commences.

OMV is launched from Space Station.

OMV rendezvous and docks with "safed"
satellite or ELV.

OMV returns to Space Station with satel-
lite.
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5. Satellite/payloadis removedfrom shroud
and/or carrier(if necessary).

6. Satellite is checkedout and repaired (if
necessary).APO commencesif previously
planned.

7. If anexpendablestageisusable,replaceinto
LEO with OMV and relaunch. If not readily

available, store satellite at Space Station.

8. If expendable stage is not available or us-

able, replace expendable stage (transported

from ground to Space Station) or launch
with next available OTV or Centaur mul-

tiple launch (adapter may be needed from

the ground).

3.3.2 ELV LEO Delivery Scenario

This scenario requires that the ELV carrier or

satellite be capable of remaining in orbit for an

indefinite period of time due to possible prob-

lems (scheduling or otherwise) with the OMV or

retrieval system. A requirement is also made on

the satellite/carrier that it be capable of being
safely grappled by the OMV.

1. ELV and payload are mated on ground.

2. ELV launched from ground.

3. ELV control into LEO.

4. Satellite/Payload Carrier are deployed for

pick-up (Note that the shroud may be part

of the carrier).

5. OMV is launched from Space Station.

6. OMV rendezvous and docks with satellite or

carrier.

7. OMV returns to Space Station with pay-
load.

8. 0MV is grappled by MRMS or hands off

payload to MRMS and waits for its own

grappling.

9. Satellite/payload is removed from carrier (if

necessary).

10. Satellite/payload is checked out. APO com-

mences as in initial study.

3.3.3 ELV Station Delivery Scenario

This scenario makes less requirements on the

carrier and payload (satellite and anything else)

that the previous one. A more stringent require-

ment is made on the ELV system to deliver the

payload safely (for the Space Station, its crew,

and the payload) and provide a reliable system

for docking or being picked up by the MRMS.

This poses some unique requirements and bene-

fits that should be examined in a future study.

This system makes fewer requirements on the

payload which may be beneficial for the overall

performance. In addition, this capability would

add an automated feature to the Space Station

delivery program that would off-load the require-

ment on the Shuttle system as well as possible

providing a lower cost alternative (see Subsec-

tion IV-4).

1. Mating on ground of ELV, rendezvous sys-

tem, and payload.

2. ELV is launched from ground.

3. ELV controlled into LEO.

4. Rendezvous system takes payload from the

safe, required ELV delivery distance to the

Space Station.

5. Rendezvous system docks with Space Sta-

tion or safely presents itself for MRMS grap-

pling. This could be done automatically or

under Space Station control.

6. Satellite/payload is removed from carrier (if

necessary).

7. Satellite/payload is checked out. APO com-

mences as in initial study.

8. Rendezvous system is returned to Earth (via

Shuttle) for possible reuse.

4 ELV Policy

This subsection provides some thoughts and

ideas on possible policy procedures for ELV

use enabling the APOs in conjunction with the

Space Station. For example, potential policy is-
sues include:
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• Scheduling

• Schedule"bumping"

• Backupscheduling

• ELV availability

The discussionof usingELVswith the Space
Stationis dividedinto two topicareaswith rec-
ommendationsmadein subsectionIV-4.3

1. GeneralELVIssues

2. Non-TechnicalIssues

3. Recommendations

4.1 General ELV Policy Issues

The current thinking at NASA has just begun

to recognize the potential for using ELVs in con-

junction with the Space Station as opposed to

using only the Space Shuttle. As yet, there is no

clear cut policy for their use.
One of the most serious issues to be faced with

regard to ELV usage is control of the vehicle

in the proximity of the Station. The current

thinking establishes zones of control around the

Station which defines areas in which the space-

craft is under earth control, its own control, or

the Space Station's control. The issue of control

raises significant issues with respect to the level

of sophistication or the guidance systems that

might be present on an ELV used in conjunction
with the Station.

Currently, there are three possible alterna-
tives:

. The ELV is launched into an orbit near the

Station but sufficiently far enough away as

to cause no danger. An OMV would be

used to rendezvous with the ELV, remove

the cargo (satellite, logistics module, com-

ponent parts, etc) and transport the cargo
to the Station.

. The ELV is launched as in the first option
but into an orbit closer to the Station and

on-board maneuvering capability be used to

bring the ELV payload even closer to the

Station where the payload can be reached

by the Mobile Servicing Platform and the
FTS.

. The ELV is launched into an orbit near the

Station and on-board maneuvering capabil-

ity be used to automatically bring the pay-
load to the Station and also dock with the

Station automatically. This system would

be similar to the system used by the Soviets

to supply their Mir and other spacecraft.

In each of these options actual control of the ELV

would be under the Station control once the pay-

load was in the Space Station's area.
With each of these solutions several issues are

raised. The first is the cost and degree of so-

phistication in the command, control and ma-

neuvering system required to accomplish each of

these activities. Clearly, the first option requires

the least, the third the most. Discussions with
members of the JPL automation and robotics

activities indicate that accomplishing the third

option is well within the capability of existing

technology. However, they suggest that it would

be opposed by the U. S. Astronaut office because

they want to "fly" all things near the Station as

part of the "pilot mentality" that, according to

JPL, is unnecessary.

The current option that appears to be most

favored is the first. The problems with the sec-

ond and third options have been addressed and

are compounded by fears of potential damage to
the Station from an autonomous ELV.

Another issue that has been raised but is of-

ten overlooked with regard to ELV payloads, no

matter which option is selected, is the issue of

disposal of used hardware. The current proposal

is to bring back whatever is not used. This op-

tion is viable for high cost, reusable systems such

as a docking system, but does not show benefit

for large carriers which may require special STS

cradles, or when ELVs are used as the primary

support vehicle. The best option appears to be

to equip the ELV and payload with some type Of

de-orbit retro-rocket sufficient to move it away
from the Station and cause orbit deterioration

adequate to cause the hardware to burn up in

the atmosphere. If this problem is not addressed,
there will be such a volume of used carriers and
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otherdebrisin theareaof theStationasto cause
a safetyhazardto all users.

4.2 Non-Technical Policy Issues

The non-technical operational issues for ELV

Use Policy are similar to those addressed for

Operational Requirements in Subsection III-6.2.

They fall into the same four categories:

1. Control

2' Procedure

3. Liability

4. Costs

This subsection addresses each as a separate is-

sue even though there is clearly significant over-

lap among them.

4.2.1 Control Policy

As with the actual operations with the satellite

or component parts of a satellite once aboard the

Station, the owner of the spacecraft will desire

to have as much control as possible during the
ELV transfer from earth to the Station. How-

ever, because of the procedures that have been

developed for the traditional launching method,

the owner/operator has been conditioned to ex-

pect very little actual control over their payload
once it is loaded on the launch vehicle. As a

result, this may not be as major a problerr[ as

it will be later in the process. However, the

owner/operator will be very concerned about the

frequency and methods by which their satellite

or its component.parts are handled once they are

on-orbit. This will raise major issues with regard

to both control and, as will be discussed below,

liability.

4.2.2 Procedure Policy

As with current launch operations and as was

discussed for operations on the Station (Sub-

section III-6.2.2), detailed procedures as to how
various activities associated with the ELV move-

ment of the payload to the Station will have to

be developed. As was noted above, the major

area of concern will be the amount and type of

handling that will have to be done in moving

the spacecraft or components from the ground

to the Station. For this reason Option 3, which

results in minimal handling and relies on proven

automated systems, is preferable.

A potential benefit here is the design and de-

velopment of standard carriers, logistics modules

or combinations thereof for use as major compo-

nent protection as well as transport mechanisms.

The design of such hardware would facilitate the

use of robotic handling of the satellite, compo-
nents and other cargo. It would also reduce the

potential for damage with subsequent liability

issues as will be discussed below. Of key con-

cern, which will also be discussed below, would
be the cost of such a carrier. It would be desir-

able that the carrier be reusable, however, there

is the problem of returning it to earth. It would

have to be designed for return by the Shuttle or

as part of some type of return capsule.

As with the operations on the Station, the de-

velopment of procedures covering all aspects of
delivering ELV launched payloads to the Station

is essential: NASA has just finished a trans-

portation study with respect to Space Station.

However, this study will not be made public for

some time because it was considered incomplete
in its present form. A second study, "ELV As-

sessment for Space Station Logistics", by Robert

R. Corban of NASA/LeRC also addresses these
issues.

It is known that NASA is actively consider-

ing the use::of ELv in conjunction with Station.

As a result, procedures for Station bulk cargo

and logistics resupply by ELV will certainly be

developed. Owners - operators considering us-

ing the Space Station for satellites should insure

that procedures are developed to accommodate

their needs.

The question facing those considering use of

the Station for satellite assembly and prepara-

tion for placement in GEO is whether to take

the satellite or components to the Station on a

dedicated ELV or as a portion of the cargo on

a general logistics flight. The advantages of a

dedicated flight are increased control but there

is no spreading of the insurance risk and there
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may be a substantial cost penalty. The advan-

tages of going on a regular logistic flight are the

opposite.

4.2.3 Liability Policy

The major liability issue facing the use of ELVs

is with respect to the Station itself. Clearly,

there is inadequate insurance or any other means

to protect any ELV operator against significant

damage caused by an ELV to the Station - the

costs involved are simply too high. This is the

major reason behind the desire to keep ELVs

away from the Station and use an OMV to move

items in close proximity to the Station. This

major question of liability will have to be re-

solved before any ELV operations can be con-

ducted. However, this question is not unique to

the satellite industry and will probably be re-

solved early in the Space Station's history when

ELV launched logistics flights are initiated. The

satellite industry will most likely follow whatever

procedures are adopted.

The second liability issue is between the satel-

lite or satellite components and other cargo that

may be present on the same ELV flight. This is

the question of potential damage caused during

the handling and movement of components by

robotics or by astronauts. Much can be done to

minimize this risk by developing and using carri-

ers as discussed above and in preparing detailed

procedures. It is most likely that some type of

insurance protection will be available for these
activities.

4.2.4 Cost Policy

The basic premise used in the initial study is

that satellite owners and operators will not use

the Station unless it is either less expensive than

going directly to GEO or significant increases in

capability can be gained. Therefore, in deter-

mining actual costs of placing a satellite in orbit

by ELV with a stop at the Station, a number of

cost components must be considered:

• Pre-launch preparation

• ELV launch cost to Station

• Costs of carriers or other handling equip-
ment

• OMV costs versus on-board maneuver-

ing/control capability

• Costs of assembly, testing and other services

provided on the Station

• Transport to GEO by OTV

Many of these costs have been discussed in

other responses to various tasks in this report.

For the purpose of this task we will concentrate

on only the ELV launch costs to Station, costs

of carriers or other handling requirement, and

costs of OMV or on-board maneuvering/control

capabilities.

The costs of ELV launch are to a large degree

a function of what portion of the ELV is used

for the satellite or components. With the ad-

vent of the Station, it is likely that existing ELVs

that are now optimized for GEO launch will be

redesigned for use with Station. In addition,
smaller vehicles such as American Rocket's In-

dustrial Launch Vehicle and larger vehicles such
as the ALS or Shuttle C will become available for

use with Station. As was discussed above, to the

degree that satellites or components can become

cargo along with other items going to the Sta-

tion, the costs should be impacted in a favorable

way. Shipping components for assembly on orbit
rather than assembled satellites will also bene-

fit cost in that they can be fit into cargo areas

as regular rather than dedicated cargo requiring

lower cost handling. The insurance benefit of

spreading the costs is discussed in Appendix D.

The key to reducing cost for ELV transport

of satellites to Station is in making them as

much like normal cargo as possible. However,

as was discussed above, moving in that direc-

tion reduces the satellite owner/operator's con-

trol and reduces his priority for activity. Since

this will be a major change from the way satel-

lite owner/operators are currently treated, this

may require a major adjustment on their part.

A major issue is the cost of the various carriers

that will have to be used to transport logistics
and other material to the Station. Such carri-

ers will be developed as part of the basic Space
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Stationbudgetprocessfor useby both Shuttle
and ELVs. It is very important that the needs
and requirementsof the communicationssatel-
lite industry bemadeknownin theearly stages
of carrier development.This would allowcar-
riers capableof transportingsatellitesor their
componentsto be manufacturedasa standard
SpaceStation logisticscomponentrather than
asa specialtyitem later in the processandat a
muchhighercost.

Sincecarrierrequirementsanddesignsareas
yet vague,the Ford Aerospacestudy might be
of significantbenefitto NASAin suggestingre-
quirementsandpossibledesignfeaturesfor acar-
rier compatiblewith satelliteindustry needsas
part of this effort.

CurrentNASAplansdonotcall for thereturn
of logisticselementslaunchedonanELV except
during the assemblyphaseof Station. This sin-
gleeventcreatesspecialneedsthat mustbemet
by the ELV and SpaceStationmanufacturers,
Twopossiblesolutionsresult: (1) makethe car-
rier ascheaplyaspossibleto withstandonlyone
use(perhapsinflatablepartssuchasthe inflat-
able antennascurrently being examined),and
(2)deviseacarrierthat canbereturnedby Shut-
tle (perhapswith partial disassemblysothat it
requireslessvolume). Thesepresentuniquede-
signchallengesfor engineersbut the keyissueis
to insurethat priceconsiderationsareveryhigh
on the list of designparameters.

: 5

A similar issue exists with respect to the trade-

otis between use of an OMV and placing guid-

ance and control capability aboard the carrier.

Clearly the OMV is being developed from NASA
funds and as a result would not become an ex-

pense directly attributable to the needs of satel-

lite users. However, as currently envisaged, the

OMV will be very expensive and use of it will al-

most certainly also be expensive due to the need

for astronaut guidance and operation. NASA

should consider the impact of costly OMV use

on the possible appeal of Station to satellite own-

ers/operators.

5 Conclusions

5.1 Summary of Results

Cost analysis shows that using ELVs in place of

the Shuttle changes launch costs, but does not

change the value of the APOs when comparing

business-as-usual ELV delivery with ELV Space

Station delivery.

There are also benefits which could be gained

that may enhance the APO values. Launching

multiple support vehicles on a regular basis offers

the satellite industry with a method of spread-
ing the launch risk over several launches and as-

sembling the satellite at the Space Station (see

Section V). This may eventually drive insurance

costs down, increasing the values of the assembly
APOs.

The usefulness of ELVs to support a Space

Station can be seen logically, but can also be

seen by example from the Soviet space program.

The MIR station is supported by a system simi-

lar to the one presented here. Logic also dictates

that the Station not be totally dependent on the

Shuttle over its entire ilfe. The system presented

above is only one example that could be used as

a guide for providing a solution to the unresolved
issues.

Significant effort beyond the ideas suggested
in this section and entire task should be devoted

to working in the areas Of both ELV support

and automatic dockingsystems. These areas wnl
prove to be a key to the future of the Space Sia-

tion operation and a focus of reducing the costs

of space utilization and exploration.

5.2 Recommendations

There are a number of unresolved policy, cost

and technical issues that deal with using ELVs to

support the Space Station. These issues apply to

commercial, government, and military satellites.

5.2.1 Need for ELVs

Severalreportsshow the need forSpace Station

support willmost probably not be met by the

STS alone. In addition,various studiesshow

the stated NASA and military(not including

SDI) needsforthe Shuttleand domestic ELVs in
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the near future (up to the year 2000) outweighs
the current capability of STS and ELVs com-
bined. This assumes that no commercial needs

for launch vehicles exist and a reasonable per-

centage of slated projects are followed through.
The conclusion is that an ELV system will

most likely be needed to support the Space Sta-

tion. However, any additional work load on the

Space Station crew will have major impacts on

the Station productivity. It is the recommen-

dation of this study that an additional set of

studies be developed and followed through by

NASA, or that existing studies be given specific

scope to examine the use of a specialized ELV

Space Station support system. The basic out-

line of such a system has been developed as an

ideal system that can be met with today's tech-

nology and with a cost impact that can be mini-

mized through repeated use and commercial op-

eration. This system addresses and attempts to

solve many of the issues that have been pointed
out.

5.2.2 Proposed ELV System

The system we have developed consists of a mid-

sized ELV system that would deliver a payload
carrier of sufficient size to fit two common-sized

satellites without upper stages (fairing approx-

imately 4.4 m by 7.6 m. This system could be

derived from an existing ELV design to defray

design costs. A reusable guidance, navigation

and docking system would be attached to sev-

erai pre-designed carriers. This system would

probably use a dual propellant system, a mono

or dual propellant system to deliver the payload
from a safe ELV launch distance to the Station

area, and a cold gas system to provide the fi-

nal maneuvering and docking within the Space

Station safety envelope.

The maneuvering and docking system should

be designed to be a man-rated safe system that

can perform all its functions automatically. A

Space Station override should be included as

an added safety feature. The maneuvering and

docking system would be removed at the Station

with the exception of a small, low-cost, dispos-

able system that would take the carrier and any

Space Station waste into an orbit where it could

enter and burn in the atmosphere. This sys-

tem would most likely be spin stabilized prior

to ejecting from the Station (spin table fixed

on Station), and would consist primarily of a

timer or remote operating system and a small

solid rocket that would supply the needed veloc-

ity change. The higher-costi maneuvering and

docking system can be returned on the Space

Shuttle with other Space Station items.

This is a system that can be proven early and

can solve issues dealing with liability because

the ELV system could be controlled by NASA

(being a single system) and eliminate the mul-

tiple transfers that would be required with an

OMV scenario. The use of ELVs would pro-
vide NASA with a system that can easily accom-

modate small schedule upsets because no turn-

around is needed (by having several maneuvering

and docking systems in use).

The use of such a system can provide almost

unlimited Station support, does not put a high

load on the crew, and provides a regular waste

disposal system for the Station, opening up addi-

tional STS return capability for the ELV dock-

ing and maneuvering system and other return-

able items. Payloads, as well as hard and soft

resupplies can be delivered to the Station on a

regular basis as well as allowing short term, high

frequency supports (many payloads over a few

days) that could prepare the Station for a long

duration confinement period for long lasting low-

g experiments.

The launch capability of the Shuttle can then

be dedicated to crew changes and large payloads

which are more infrequent, reducing the launch

load on the Shuttle fleet, extending the life of

each vehicle, and providing a system that is not

dependent on only one launch system that could

be grounded due to a failure or long, unexpected

launch delays.
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Section V

ON-ORBIT ASSEMBLY AND SERVICING

1 Introduction

This section presents the results of Task 7, On-

orbit Assembly and Servicing. Designs are de-

veloped for serviceable satellites, assembly and

launch scenarios are hypothesized, and satellite

economic performance is compared with a con-

ventional baseline system. The work is organized

in eight subsections:

1. Introduction

2. Modular Satellite Designs

3. Assembly and Launch Operations

4. Servicing Scenarios

5. Economic Performance

6. Requirements on Station

7. NASA Course of Action

8. Conclusions

The basis for this task is that the Space Station
can serve as a low earth orbit base for satellite

servicing, assembly, and launch operations. The
satellite can be assembled and tested at the Sta-

tion before being transported to its final destina-

tion via low thrust space-based OTV, thus reduc-

ing the risk of beginning-of-life failures. As the

satellite reaches its end of life, a remote servicer is

sent to exchange failed or degraded components

and replenish consumables, thus extending the
life of the satellite. The net result of such a sce-

nario is to reduce program costs through reduced

insurance, launch, and replacement costs.

This section develops the designs for ser-

viceable spacecraft, gives assembly and launch

scenarios, and compares economic performance

against a baseline business-as-usual scenario. Be-

fore the results on modular satellite designs are

presented, three topics are discussed as back-

ground:

NASA Infrastructure details the as-

sumed Space Station infrastructure required

for assembly and servicing of modular satel-
lites.

ii. Baseline Satellite Design gives the non-

modular design against which the economic

performance of the modular design is com-

pared.

iii. Serviceable Components of a satellite are
identified.

1.1 NASA Infrastructure

In order to perform assembly and servicing ac-

tivities either at the Space Station or on-orbit,

the following infrastructure is assumed to exist:

i Full operation capability Space Station:

- Orbital Maneuvering Vehicle (OMV)

- Orbital Transfer Vehicle (OTV)

- Payload integration and checkout facil-

ity

• Remote satellite servicer system (available

by late 1990s to early 2000s)

• Fluid transfer via a refueling kit

Transportation of the satellite servicer, OMV, re-

fueling kit, and the satellite replacement parts
from the Station to GEO is via the OTV.
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1.1.1 Transportation Systems

Orbital Transfer Vehicle

The Orbital Transfer Vehicle (OTV) is a reusable

cryogenic upper stage that has a throttleable en-

gine for high and low thrust maneuvering capa-

bilities. It uses aerobraking for descending to

lower orbits, thus substantially reducing fuel con-

sumption.

The OTV is used to perform the large orbit

change maneuvers necessary to transport the ser-

vicing equipment, spares, and OMV to GEO and

to return the servicing equipment and debris to
the Station.

Orbital Maneuvering Vehicle

The Orbital Maneuvering Vehicle (OMV) is used

to provide fine maneuvering control during prox-

imity and rendezvous operations. It has three

separate propulsion systems:

i. a bipropellant system for large delta velocity

capability,

ii. a monopropellant system for moderate delta

velocity capability, and

iii. a cold gas system for fine control and con-

tamination prevention.

The OMV has a radar system for locating re-

mote targets for rendezvous and TV cameras for

object location and docking, and can operate au-

tonomously or can be controlled by a pilot on the

ground. It will be designed to interface with the
remote Servicer and provide power and commu-

nications support to the servicer and attached

payloads.

The OMV also has a "contingency hold" capa-

bility which could allow it to remain in geosyn-

chronous orbit for up to nine months. Thus

the OMV Could perform additional servicing mis-

sions without having to return to the Station for

servicing, thus reducing the mission transporta-

tion costs, tt0wever, use 0fcontlngency hold im-

plies production of at least two OMVs in order to

minimize the impact on other operations at the
Station.

1.1.2 Remote Servicing Systems

The servicer could be robotic or telerobotic with

one or more arms and is transported by the

OMV along with the Orbital Replacement Units

(ORUs). There are two current approaches to

the servicer design.

. The Integrated Orbital Servicing Sys-

tem (IOSS) applies existing industrial

robotic technology to satellite servicing, and

carrys out a preprogrammed set of instruc-

tions to exchange modules, connect umbili-

cals, and perform other servicing tasks.

o The Flight Telerobotic Servicer (FTS) is

a proposed telerobotic system for the Space
Station that can be mounted on the OMV

for remote servicing. It uses technology sim-

ilar to that developed for nuclear teleopera-

tor systems and may have two or more dex-

terous arms, advanced sensory capabilities

and should be roughly equivalent to a suited
astronaut.

1.1.2.1 IOSS. The Integrated Orbital Ser-

vicing System was developed by NASA, Marshall

Space Flight Center (MSFC), and is based on

proven industrial robot technology. Figure V-I

shows a 1 G engineering test unit built by Martin

Marietta which =has been used in many :Success-

ful demonstrations of module exchanges. It has a

six degree-of-freedom arm driven by complemen-

tary ground and space-based computers, and a

standard end effector for module exchanges. It
can accommodate other end effectors and tools

to accomplish a wide variety of tasks.

The IOSS carries out a preprogrammed set of

instructions under ground operator supervision.

Since this system follows a programmed set of

motions for each servicing operation, it assumes

that all geometries are known in advance and do

not vary over time. Thus the locations of the

modules, fuel ports, OMV docking points, and

any obstacles must be known well in advance in

order to be programmed.

The OMV docking operation will initially be

performed manually by a ground operator uti-

lizing visual references for alignment and thus
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Figure V-l: Integrated Orbital Servicing System: Configured for Demonstration

allows for operator induced errors. However, a

possible difficulty with the IOSS system lles in

docking misalignments. Any error in docking ge-

ometry induces a constant error in each servicing

operation as the IOSS programming is based on

assumed geometries between the satellite and the

OMV. The most likely docking misalignment is

around the roll axis since the OMV docking in-

terface is rigid in two dimensions. The current

OMV docking interface is based on the RMS end

effector design. This device rigidly aligns itself

in pitch and yaw but allows a roll misalignment.

One possible solution is to change to a different

docking adapter which self aligns and becomes

rigid in all three dimensions after docking. Other

possible solutions involve measuring the roll error

and having the software update the arm trajec-

tories accordingly, or to use sensors to close inner

control loops to actively control the end point of
the end effector.

The IOSS is capable of three modes of opera-
tion:

i. Supervisory. The servicer carries out a pre-

programmed set of tasks under the super-

vision of a ground operator. The operator

observes the servlcer's operation via a cam-

era mounted above the end effector and may

interrupt the operation at any time.

ii. Manual Augmented. The operator controls
the arm via a hand controller.

iii. Manual Direct. The operator commands the

individual joints via a switch panel.

The two manual modes provide the flexibility for

the operator to interrupt an operation and per-
form manual corrections in real time. This ca-

pability gives the IOSS the flexibility to handle

unplanned events or perform additional repairs

during servicing operations.

The basic module exchange operation for the

IOSS consists of removing the old module from

the spacecraft interface; flipping it over for load-

ing into the ORU rack; inserting it into a va-

cant location on the ORU rack; removing the re-

placement module from the ORU rack; flipping it

over to insert in the proper location on the space-

craft and inserting it into the spacecraft interface

mechanism (Figure V-2).
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The refueling operation consists of removing

the refueling umbilical from the storage rack and

inserting the fluid coupling into the fueling port.

The fluid transfer is performed by the refueling

kit. Once the fuel transfer has been completed

the arm removes the coupling from the port and

returns it to its storage location.

The IOSS is a simple design that can perform a

wide range of servicing tasks such as inspection,

module replacement and refueling. This servic-

ing system requires that the satellite has a mod-

ular design but allows the designer complete flex-

ibility in designing the individual modules. The

only requirement is that the satellite module in-

terface be compatible with the IOSS end effector.

The IOSS, however, can accept special end effec-

tors or tools which gives the designer additional

flexibility.

Another satellite design consideration is that

the current IOSS does not have any sensing or
collision avoidance capabilities and therefore care
must be taken to ensure that there is a clear

path from the ORU rack to each module to be

serviced. This should not present any severe

design constraints and future improvements to

the IOSS can incorporate the necessary software

and collision avoidance technologies for obstacle
avoidance. The IOSS does avoid the problems of

time delay inherent in real time control systems

through local control during supervisory opera-

tion. The IOSS is also an existing system that

has clearly demonstrated that remote servicing

will be possible as the OMV becomes available.

1.1.2.2 FTS. The Flight Telerobotic Ser-

vicer is planned to be a multipurpose robotic sys-

tem that allows a variety of uses and interfaces

with several different supporting vehicles. One of

its enabling objectives is to perform remote satel-

lite servicing as an OMV smart front end. This

system may consist of two or more seven degree
of freedom arms. At least two of these arms may

be highly dexterous and may be capable of inter-

facing with a variety of end effectors. It will start
out as an advanced force reflecting teleoperator

system and increase in autonomy until it becomes

an intelligent robotic system. It is expected to

have advanced sensing systems that may include
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force/torque, tactile arrays, position, proximity

and an advanced vision system. It should be

nearly equivalent to a suited astronaut in space

and therefore capable of dexterous assembly and

repair operations. This should ease some of the

constraints on the designer when he is consider-

ing servicing design trades.

This system utilizes the natural intelligence in-

herent in man-in-the-loop operations. The FTS
will be controlled by a human from a worksta-

tion located in the Space Station that may pro-

vide the operator an extensive array of sensory
information from the remote worksite. In the

initial phases of operation the operator manually

controls the system but it is planned to gradu-

ally move towards autonomous operation as the

necessary Artificial Intelligence (AI) and expert

system technologies become available.

A potentially severe drawback to the extensive

sensory feedback and teleoperation is the time

delay due to the distance separating the opera-

tor from the worksite. Any sensory information

received by the operator lags the input by at least

0.25 seconds. Studies done on teleoperator sys-

tems show that operator performance degrades

severely with signal delays greater than 0.10 sec-

onds and time delays for force reflecting systems

tend to confuse the operator. This issue is be-

ing studied by NASA and they are looking at

ideas such as letting the operator pre-plan the

mission using a computer model and then letting

the system carry out the operation in a super-

visory mode with the operator being able to as-

sume real time control in case of complications.

In its initial configuration the FTS may have

the added flexibility of two arms which for ex-

ample, may allow one arm to cut away a thermal

blanket while the other pulls it away. It also may

be highly dexterous which could remove some of

the design constraints on the spacecraft/module

interface and may have a higher probability of

mission success because of the flexibility afforded

by man-in-the-loop control. For example, if a

piece of equipment has not deployed, the FTS

operator would be able to observe this and could

manually attempt a repair. In this instance two

arms may beneficial, particularly if it is a highly

dexterous operation. For most servicing opera-

tions however, one arm and an attachment device
would be sufficient.

While the proposed FTS has many advantages,

it is currently beyond the state of the art. Many

of the required technologies are still in their in-

fancy and the system is in its early development

stage. There are still many control issues with

the FTS such as teleoperator control with time

delays, cooperative computer control of multiple

manipulators and end point control with multi-

ple sensory inputs that must be solved. When

considering a servicing system, it should be re-

membered that the design process will lead the

production by at least 5 years. Therefore, any

features and technologies incorporated into the

design must be sufficiently demonstrated at least

five years prior to launch. This means that even

if the FOC FTS exists by 2005, it will proba-

bly be 2010 before spacecraft will be fully FTS

compatible.

1.1.2.3 IOSS Versus FTS. The IOSS in its

present state is capable of performing a wide

range of servicing tasks with a single arm. In

addition, the IOSS is considerably lighter than

the projections for the FTS. This is an impor-

tant advantage as it reduces the amount of mass

to be transported per servicing mission. The sys-

tem can be upgraded to advanced control archi-

tectures using sensory feedback to enhance per-

formance, to improve operator interface for im-

proved real time control and to incorporate artifi-

cial intelligence and expert systems technologies
as they reach maturity. The IOSS has the added

advantage of being a proven system with a her-

itage of many successful demonstrations.

As the OMV and OTV become available the

IOSS can be used as a first generation servic-

ing system. Over time it can be upgraded and

enhanced with advanced technologies until such

time that the FTS has been fully developed and

tested. At that point the FTS (or servicer based

on FTS technology) would take over as the sec-

ond generation servicing system. This approach

would be more cost effective than forcing the

FTS development to be geared to remote space-

craft servicing. Forcing the FTS to be the first

generation remote servicer will place tremendous
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schedulingpressuresto developtherequiredtech-
nologies.

1.1.3 Fluid Transfer

The refuelingkit will be mountedon the OMV
and consistof the tanks,pumps,umbilicals,re-
motefluid couplings,umbilicalmanagementsys-
temandstructure. Manyof thecomponentswill
be similar to thosefoundon the Orbital Space-
craft ConsumablesResupplySystem(OSCRS)
but theoverallsystemwill bemuchsmaller.The
capacityof OSCRSis considerablylarger than
necessaryfor theplatformandtheresultingmass
penaltywouldprecludeall of the necessaryser-
vicingfrombeingcompletedwith a singleservic-
ing mission.By usingscaleddowncomponentsa
lighter systemcouldbe built at a relativelylow
cost and wouldallow all of the servicingto be
completedononemission.

Another possibilitywouldbe to scavengethe
fuel from the OMV. This wouldreducethe mass
of the refuelingkit but may requirethe useof
the propulsionmodulefor additional fuel stor-
agecapacity. For missionsnot requiringdelta
velocity capability abovethat providedby the
Short RangeVehicle(SRV),the addedmassof
the propulsionmodulewill morethan offsetthe
masssavingsby eliminatingthe fuel tanks from

the fueling kit. (The SRV is a small version of

the OMV.)

1.1.4 Equipment Not Available ....

The following pieces of equipment are currently

being studied by NASA, but are judged to be not

available in the time frame of this study (1995 -

2005):

i. the GEO-based OMV,

ii. the GEO Shack, and

iii. the man rated OTV.

These pieces of equipment are currently in the

very early stages of development and may be

available by 2010. The GEO-based OMV would

reduce the mass of the servicing equipment that

must be transported to GEO on each servicing

mission and thus reduce the cost of servicing.

In order to maximize the efficiency of the
GEO-based OMV, it should have its own ded-

icated IOSS. The OTV would then need only

carry the refueling kit, fuel, and replacement

units (ORUs) for the satellite being serviced. It

is felt that this equipment is beyond the time pe-

riod of interest for this study and therefore is not

part of the servicing scenarios.

1.1.5 Space Stat|on Services

The full operational capability Space Station will

support satellite assembly and repair activities

ranging from assembly of modular designs to fi-

nal testing. The two modular satellite config-

urations presented here require varying levels of

assembly at the Space Station while the business-

as-usual configuration is assembled and tested on

the ground. The assembly activities supported

by the Space Station include:

• Subsystem level assembly

• Storage of modules, assemblies and sub-
assemblies

• Testing of subsystems and systems

• Component level repair

• Deployment of appendages

• Inspection

• Fueling

1.2 Baseline Satellite Design

The study methodology is to compare the eco-

nomic performance of modular satellite designs

that can be fueled, serviced, and/or assembled
on-orbit with a baseline business-as-usual satel-

lite design. This subsection describes the non-

modular design selected as the baseline satellite.

The modular designs are described in Subsection
V-2.

The baseline satellite design selected is the

Ford FS-1300 shown in Figure V-3. It is a 3-

axis design for the 1995 to 2010 time period, and

has a hybrid payload of 24 C-band and 30 Ku-

band transponders. It can be launched on the

STS, Titan 4, or Ariane 4, and has a planned
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SatelliteComponent
C-bandtransponders
C-bandantenna
Ku-bandantenna
Ku-bandtransponders

Total (Payload)
TT&C
Attitude control
Propulsion
Power
Thermal
ControlElectronics
Structure
Harness
MechanicalIntegration

Total (Bus)
Satellitedry mass
Propellant(12years)

SatelliteBOL mass
Apogeefuel (Ariane4 launch)

SatelliteGTO mass

72

17

26

290

405

16

59

107

307

122

51

204

53

24

943

1,348

360

1,708

1,093

2,801

Table V-l: Baseline Satellite Mass Summary

life of 12 years. Although the baseline design is

somewhat modular, it is not designed for remote

servicing.

The major design characteristics of the base-

line satellite are given in Table V-2. The mass

summary is given in Table V-l, and the power

summary for the baseline satellite is given in Ta-
ble V-3.

A discussion follows of the satellite configura-

tion, major subsystems, and satellite reliability.

The discussion is divided into the following sub-
sections:

1. Satellite Configuration

2. Attitude Control Subsystem

3. Propulsion Subsystem

4. Electrical Power Subsystem

5. Telemetry, Tracking, and Command

6. Control Electronics Subsystem

Satellite Subsystem

C-band Transponders

Ku-band Transponders

Total (payload)
TT&C

Attitude control

Propulsion

Power

Thermal

Control electronics

Harness loss

Total (bus)

Battery Charging

Total spacecraft load

Solar array outpu't' (EOL)

Power (W)
Solstice Eclipse

660 660

3,345 3,345

4,005 4,005
30 30

113 96

2 2

42 42

131 75

80 80

44 43

422 368

133 0

4,560 4,373

4,390 0

Table V-2: Baseline Satellite Power Summary

7. Thermal Control Subsystem

8. Structure and Mechanisms

9. Payload

10. Satellite Reliability

1.2.1 Satellite Configuration

The baseline configuration is developed for both

STS and expendable launch vehicles. The de-

sign employs modular construction of bus and

payload subsystems. The modular design allows

the assembly and test of the spacecraft subsys-

tems to be conducted in parallel which reduces

the costs associated with these activities. Fig-

ure V-4 shows an exploded view of the base-

line satellite showing its modular construction.

Additional features of this configuration are as
follows:

• Sunshade for radiator surfaces.

• Heat pipes in the north and south panels.

• Designed for maximum modularity and

equipment accessibility.

• Designed for STS, Ariane 4 or Titan 4
launch vehicles.
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FigureV-3: BaselineSatelliteDesign(Ford FS-1300)
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Figure V-4: Exploded View of Baseline Satellite Shows Construction
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Manufacturer& model:
Type:
Lifetime:
On-boardswitching:

Launchvehicle:
Frequencybandandbandwidth:
- receive:
- transmit:
Antenna
- type:
- number:
- size:
- mass:

- coverage (2 C and 3 Ku beams):

- polarization:

Transponders
- number of C-band:

- SSPA redundancy (C-band):

- receiver redundancy (C-band):
- number of Ku-band:

- TWTA redundancy (Ku-band):

- receiver redundancy (Ku-band):
-- mass:

- dc power:

Spacecraft

- size (stowed):

- mass, BOL (dry):

- power (EOL) at summer solstice:

- primary power
- batteries:

- attitude and station keeping:

- attitude pointing accuracy:

- apogee motor

Ford Aerospace, FS-1300

Hybrid communications satellite

12 yr

Among coverage regions, also
C- and Ku-bands interconnected.

STS + upper stage or CELV.
C-band and Ku-band

5.925 - 6.425 and 14.0 - 14.5 GHz

3.700 - 4.200 and 12 - 12.75 GHz

Offset parabolic, dual gridded
2

1.4m x 1.8m C-band, 2.1m Ku-band

17 kg C-band, 26 kg Ku-band
CONUS and E & W CONUS

H and V linear for both bands

24 each, 36 MHz bandwidth
6for5

3for2

30 each, 36 MHz bandwidth
5for4

4for2

72 kg C-band, 290 kg Ku-band

660 W C-band, 3,345 W Ku-band

2.5m x 1.88 m x 2.6m

1,338 kg

4,560 W

Solar cells (thin Si)

4 NaS, 262 Ah (total)

3-axis stab, biprop thrusters
0.I0 °
100N

Table V-3: Baseline Satellite (FS-1300) Design Characteristics
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1.2.2 Attitude Control Subsystem

The attitude control subsystemconsistsof the
sensors,actuatorsandprocessingelectronicsnec-
essaryto maintain the spacecraftin its proper
orientationwith respectto thesunandtheearth.
Theattitudecontrolsystemselectedfor thebase-
line designincludesthe following components
and features:

Reaction Wheels- Two reaction wheels for

correction of pitch and roll errors. Yaw con-

trolled through passive coupling and mag-

netic torquers.

Magnetic Torquers - Roll/yaw magnetic tor-

quers for control of yaw errors.

Earth Sensors - Sensing of pitch and roll er-

rors during ascent through normal mode and

station keeping maneuvers.

Sun Sensors - Determination of pitch and yaw

errors during ascent and station keeping op-
erations.

Ring Laser Gyros- Determination of abso-
i lute attitude and attitude rate information

during ascent and station keeping opera-
tions.

Solar Array Drive Assembly- Clock driven

stepper motors move the array panels to

maintain maximum power output. Array

power is passed to the main bus across slip

rings.

1.2.3 Propulsion Subsystem

The propulsion subsystem is responsible for orbit
insertion and maintenance and momentum wheel

unloading. The propulsion system features are
listed below.

Propellant- Bipropellant monomethylhydra-

zine, nitrogen tetraoxide system. Features

Isp of 290 seconds.

Tanks - Two tank system, one for for each pro-

pellant. Tanks are made of drawn titanium
for decreased mass and oxidation. The tanks

are mounted in the spacecraft central struc-

ture.

Plumbing - Valves, lines are made of titanium.

Isolation valves ensure propellant contain-

ment during shuttle operations and emer-

gencies.

Thrusters- 12 thrusters are used for station

keeping and momentum unloading. Redun-

dancy is provided by mounting thrusters in

pairs.

1.2.4 Electrical Power Subsystem

The power subsystem provides for the genera-

tion, storage, regulation and distribution of elec-

tricai power. The power subsystem features are
listed below:

Solar Arrays- Thin n-on-p silicon cells are

used for mass reduction. Solar arrays pro-

vide primary power for bus and and payload

subsystems during the non-eclipse phases.

Batteries - The batteries are used to store elec-

tricai energy for use during eclipse opera-

tions, clearing faults and for end-of-life oper-

ations where solar array power is insufficient

to support the entire spacecraft load. Four

NaS batteries provide 262 Ah of storage ca-

pacity.

1.2.5 Telemetry, Tracking, Command

The Telemetry, Tracking and Command (TT&C)

subsystem provides for telemetry transmission,

command receiving, and ranging signals. The te-

lemetry formatting and modulation is performed

in the Central Electronics Subsystem. The com-

munications subsystem design allows simultane-

ous telemetry and ranging operations. A descrip-

tion of the subsystem is provided below.

Transponders- Ku-band transponders are

used to transmit and receive the frequent te-

lemetry and commands during transfer and

synchronous orbit operations.

Antennas- The CONUS communication and

omni-directional antennas are provided for

transfer and synchronous orbit operations.

V- 10
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1.2.6 Control Electronics Subsystem

The Control Electronics Subsystem (CES) per-
forms data processing functions, command de-

coding and telemetry formatting functions. The

CES performs data processing and management

functions for the power, attitude control, propul-

sion, thermal and payload subsystems. The CES

is a 16 bit microprocessor based system with dis-

tributed microprocessors in the Remote Teleme-

try Units (RTU). The flexibility of the micropro-

cessor based system allows for block command-

ing, higher levels of autonomy and improved at-

titude control performance through the ability to

program attitude control subsystem. The com-
ponents of the CES are described below.

Central processor unit (CPU) - Consists
of memory boards, both read only and ran-

dom access memory (ROM and RAM) and
a 16-bit microprocessor. The CPU contains

the main memory for the spacecraft and per-
forms the main spacecraft control routines.

Data concentrator unit (DCU) - There are

2 DCUs which perform the control and com-

mand processing at the subsystem level.

The DCUs are microprocessor based and

contain some local memory.

Remote terminal units (RTU) - There are

3 RTUs that are responsible for teleme-

try gathering from the payload and sensors.

Processing is limited to analog to digital con-
version and smart control is derived from the

DCUs.

Data bus - The data bus is a MIL-STD 1553B

data bus which features low impedance and

a favorable signal to noise ratio.

1.2.7 Thermal Control Subsystem

The thermal control subsystem provides active

and passive thermal control for the payload and

bus subsystems. The following elements and fea-

tures are contained in the thermal subsystem:

Thermal Insulation - Multilayer blankets in-

sulate the bus and payload subsystems from

external variations in temperature. Insula-

tion is placed on the bus, around propellant

lines and thrusters and around solar array
shunts.

Heat Pipes- Fixed conductance heat pipes

are placed in the external spacecraft struc-

ture surrounding the transponders to pro-

vide heat dissipation and a thermal path to
the radiators.

Thermal Coatings- White and black paints

and optical reflectors are used to provide

heat absorption and rejection for passive
thermal control.

Heaters- Heaters are used to provide active

thermal control for temperature sensitive

components.

Battery Thermal Control- The sodium sul-

fur batteries require an operation tempera-
ture between 250 ° and 350 ° C. These tem-

perature limits are maintained through a
combination of variable conductance heat

pipes and heaters. Variable conductance

heat pipes were selected because of they are
more reliable than louvers and heat valves.

The entire battery thermal control system is

contained within the battery module.

1.2.8 Structure and Mechanisms

The structure and mechanisms consist of the fol-

lowing items:

• Berylium central cylinder supports equip-

ment panels forming a box.

• North-south panels are aluminum face skins

over aluminum honeycomb.

• East-west panels are graphite face skins over

aluminum honeycomb.

Holddown and release units for solar array

and antenna reflectors utilize pyrotechnic

cable cutters and spring deployment motors.
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1.2.9 Payload

The payload subsystem consists of the C and Ku-

band transponders, waveguides, antennas, and
other associated communications hardware. The

payloads chosen provide Ku-band coverage for

CONUS, Alaska and Hawaii, and C-band cov-

erage for 90% of CONUS, Alaska, Hawaii and

Puerto P,Jco. The basic components and their
features are described below.

C-band Transponders- 24 C-band tran-

sponders are provided with 5/4 redundancy

and 36 MHz bandwidth. The transponders

feature 8.5 W solid state power amplifiers

(SSPA).

Ku-band Transponders- 30 Ku-band tran-

sponders are provided with 5]4 redundancy

and 36 MHz bandwidth. The transpon-

ders use 50 W traveling wave tube amplifiers

(TWTA).

Upconverters - The upconverters are used for

Ku-band transponders. The npconverters

are driven by master oscillators. Each set

of master oscillators drives 8 upconverters.

Switch Matrix- Provide switching within
and between C and Ku-bands.

Antennas - Two offset fed, dual gridded anten-

nas are provided for transmitting and receiv-

ing C- and Ku-bands. The antennas are on
the east and west faces of the spacecraft.

1.2.10 Spacecraft Reliability

Modern communications satellites are typically

designed to last between 7 and 12 years, and by

the 1990s the upper limit may go as high as 14

years. Current methods of increasing lifetimes

involve added or improved redundancy and im-

provements in the quality of spacecraft compo-

nents. Although these methods have been suc-

cessful in the past, there are indications that life-

time extensions beyond 15 years require exten-

sive redesign of the spacecraft to withstand the

increased total dosage of radiation. The increase

in mass and the design and manufacturing costs
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Figure V-5: Reliability for Baseline Satellite

involved in the redesign may be greater than con-

verting to a serviceable spacecraft.

The composite reliability curve for the bus and

payload components on the baseline satellite is

shown in Figure V-5. At the end of its 12 year

mission there is a probability of less than 50%

that the entire spacecraft will be able to complete

the mission. The biggest contributing factor to

this figure is the payload. The probability of the

payload being able to complete the mission is ap-

proximatedly 60% whereas the bus has an 80%

probability of completing the mission.

TWTA failures account for a largest number

of failures. As the Ku-band transponders transi-

tion from being TWTAs to SSPAs, the reliability

of the payload can be expected to increase sig-

nificantly.

The other major obstacle in extending satel-

lite lifetimes is the hardening of electrical compo-

nents, which requires extensive shielding and/or

component redesign all the way down to the chip
level. This will drive the cost of the satellite be-

yond that of a serviceable design and may not

yield lifetime increases equal to those achievable

with servicing.

1.3 Serviceable Components

An analysis of the baseline design is performed

to determine which subsystems can be serviced

by the hypothesized servicing infrastructure of

V- 12
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Subsection V-I.1. The subsystems are analyzed
to determine

i. lifetime,

ii. failure modes, and

iii. possibility of being serviced.

The first two criteria are based on historical ex-

perience while the last is based on an evaluation

of the individual subsystem designs.

The designs are analyzed to determine their

adaptability to a modular design, the number

and complexity of interfaces required, and com-

patibility with proposed robotic systems. Ta-

ble V-4 shows the results of this analysis.

2 Modular Satellite Designs

The current trend in satellite manufacture is to-

wards modularity. Modularity allows the assem-

bly and test activities for the various subsystems

to be performed in parallel and integrated as

complete assemblies. As satellites become com-

pletely modular, they can be assembled on orbit

at the Space Station and serviced remotely. In

order to determine the benefits on orbit assembly

and servicing, three modular satellite designs are

developed:

1. The Refuelable Satellite Design is a

slight modification to the baseline business-

as-usual satellite that can be launched by

ELV directly to GEO orbit. It is capable of

being refueled in orbit.

2. The Closed Architecture Design is capa-

ble of being deployed and tested at the Space
Station and serviced on orbit after an initial

12 year lifetime. It is capable of undergo-

ing refueling and replacement of life-limited

payload equipment with the exception of so-

lar arrays.

3. The Open Architecture Design is capa-

ble of being transported to LEO in pieces,

assembled and tested at the Space Station,

and serviced on orbit after an initial 12 year

lifetime. It is capable of undergoing refuel-

ing and replacement of life-limited payload

equipment with the exception of solar ar-

rays. In addition it is capable of on-orbit

storage of degraded or failed orbital replace-
ment units.

2.1 Refuelable Satellite Design

The baseline non-modular configuration de-
scribed in Subsection V-1.2 is modified to allow

the possibility of refueling to extend the lifetime.

This configuration allows the number of tran-

sponders to be increased - from 24 to 30 C-band

and from 30 to 35 Ku-band transponders. The

satellite mass summary is given in Table V-5,

and the power summary is given in Table V-6.
The modifications to the baseline satellite de-

scribed in Table V-2 are as follows.

• The amount of station keeping fuel is re-

duced to a 8 yr supply from a 12 yr supply,

thus saving 116 kg in mass.

• 5 Ku-band and 6 C-band transponders can

be added using the fuel mass savings.

• An additional 779 W power is required for

these transponders.

• Increased thermal subsystem capacity is re-

quired to offset the increased heat dissipa-
tion.

• The propulsion subsystem and structure are

modified to include remote fluid couplings

and an OMV docking interface which allows

the satellite to be fueled by the OMV and
remote servicer.

• Lifetime is increased from 12 to 14 years.

2.2 Closed Architecture Design

The closed architecture modular design is based
on the traditional closed architecture of the base-

line satellite described in Subsection V-1.2. The

main bus is fully integrated on the ground and

launched to the Space Station on an ELV or the

STS. At the Space Station the appendages are

deployed and system level tests are performed,

and the OTV is used to transport the satellite to

geosynchronous orbit.

V- 13



Bus

Component

Structure

Propulsion
Tanks

Fuel lines

Thrusters

Power

Generation

Storage

Distribution

Attitude Control

Sensors

Actuators

Life

Limitations

Blocked orifices

Clogged lines

Blocked orifices

Radiation

Cell depletion

Cycling of relays

Sensor degrades

Cycle
Limitations

Worn valves

Thermal cycles
of connections.

Moving parts
wearout.

Moving parts
wearout.

Consumable

Limitations

Fuel

Technology
Limitations

Material

properties.

I,v of fuel

Cell efficiency

Batteries;
Nitt and NaS.

Converter design

Sensors

ServicingRequired?

None

Refuel

None

None

None

Replace

Replace

Replace

Replace

TT&C Aging of electronics Solid state designs, None
transmitter.

NoneThermal

Central electronics

Solar array drive

Payload
Antennas

Transponders

Data storage, Replace
microprocessors

None

Materials

Replace TWTAs
with SSPAs.

Moving parts
wearout.

Infant failure

Aging of coatings
and blankets

Aging of electronics

TWTA wear out

SSPA aging

None

Replace

Table V-4: Analysis of Serviceable Components on Baseline Satellite
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Satellite Component

C-band transponders
C-band antenna

Ku-band transponders
Ku-band antenna

Total (_Payload)
TT&C

Attitude control subsystem

Propulsion subsystem

Power subsystem

Thermal subsystem

Control electronics subsystem
Structure

Harness

Mechanical Integration

Total (Bus)

Dry spacecraft mass

Propellant (8 years)
Spacecraft BOL mass

Apogee Fuel (Ariane 4 launch)
Satellite GTO mass

86

17

344

26

473

16

59

75

335

132

51

204

55

24

951

1,424
244

1,668

1,062

2,730

Table V-5: Mass Summary - Refuelable Satellite

Satellite Component

C-band transponders

Ku-band transponders

Total (Payload)
TT&C

Attitude control subsystem

Propulsion subsystem

Power subsystem

Thermal subsystem
Control electronics

Harness loss

Total (Bus)

Battery charging
Total load

Power (W)

Solstice Eclipse

770 770

4,014 4,014

4,784 4,784
30 30

113 96

2 2

22 42

131 75

80 80

44 43

422 368

156 0

5,362 51'i52

I Solar array power (EOL) [ 5,290 [ 0 ]

Table V-6: Power- Refuelable Satellite

Satellite Component

C-band transponders
C-band antenna

Ku-band transponders
Ku-band antenna

Total (Payload)
TT&C

Attitude control subsystem

Propulsion subsystem

Power subsystem

Thermal subsystem
Control electronics

Structure

Harness

Mechanical integration

Total (Bus)
Total satellite (dry)

Propellant (12 years)

Total satellite (BOL)

Mass (kg)
Years Years

1-12 12-24

72 72

17 17

336 290

26 26

451 405

16 16

64 64

75 75

335 327

134 134

51 51

390 390

65 65

66 66

1,196 1,188

1,647 1,593
436 421

2,083 2,014

Table V-7: Mass Summary - Closed Design

The mass summary for this configuration is

given in Table V-7, and the power summary is

given in Table V-8 The closed architecture satel-

lite design is shown in Figure V-6. Figure V-7
shows the subsystem modules and the satellite
structure.

The description of the dosed architecture de-

sign is divided into the following subsections:

1. Configuration

2. Attitude Control Subsystem

3. Propulsion Subsystem

4. Electric Power Subsystem

5. Telemetry, Tracking, Command

6. Control Electronics Subsystem

7. Thermal Control Subsystem

8. Payload

9. Structure and Mechanisms
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FigureV-6: ClosedArchitectureSatellite

EARTH
/

K •I_ND TRANSPONDER

MODULES /
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Figure V-7: Exploded View of Closed Architecture Satellite Shows Modularity
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.... Power-(W)

SatelliteComponent
C-bandtransponders
Ku-bandtransponders

Total (Payload)
TT&C
Attitude controlsubsystem
Propulsionsubsystem
Powersubsystem
Thermalsubsystem
Controlelectronicssubsystem
Harnessloss

Total (Bus)
Battery Charging

Total satelliteload

Years1-12 Years12-24
Solstice Eclipse

660 660
3,791 3,791
4,451 4,451

30 30
113 96

2 2

42 42

131 75

80 80

44 43

422 368

146 0

Solstice Eclipse

660 660

3,345 3,345

4,005 4,005

30 30

113 96

2. 2

42 42

131 75

80 80

44 43

422 368

133 b

5,019 4,819 4,560 4,373

[ Solar array capacity (EOL) [ 4,877 0 [ 4,450 01

Table V-8: Power Summary for the Closed Architecture Satellite

2.2.1 Configurat ion

The configuration for the closed architecture de-

sign is determined from the analysis of the ser-

viceable components described in Subsection V-

1.3 and a reliability analysis. Based on the ca-

pabilities of the anticipated remote servicing sys-

tems described in Subsection V-l.l.2, the satel-

lite was initially divided into modules according
to subsystems. The spacecraft components were

analyzed to determine the range of serviceable

components and the number of subsystem mod-

ules required. It was found that the increased

mass of the structure, hardware, and thermal

subsystems required to support discrete subsys-

tem modules offsets the advantage of increased

flexibility in servicing.

Thus the decision was made that the spacecraft

is to be composed of composite modules that

may contain components of several subsystems.

The selected configuration utilizes four modules

which contain the following equipment:

i. Ku-band payload components in a single

module on the north facing panel.

ii. C-band components in a single module on

the south panel.

iii. Batteries in a second module on the south

facing panel.

iv. Bus subsystem in a single module on the

earth facing panel. (The bus module con-

talns the attitude control equipment.)

These modules are the orbital replacement units

(ORUs) that can be serviced.

2.2.2 Attitude Control Subsystem

The effect of modularity on the baseline config-

uration is to increase the dry mass of the space-
craft, which in turn increases the moments of

inertia and the effects of the gravity gradient.

The asymmetrical antenna configuration results
in disturbances about the roll axis due to solar

pressure imbalances. The combination of the in-

crease in the secular and cyclic torques must be

offset by an increase in the sizes of the momen-

tum wheels and magnetic torquers. However,

this results in only a minor increase in size, and

the attitude control system remains basically un-

changed from the baseline.
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All componentscontained in the Attitude Con-

trol Subsystem (ACS) are replaced after twelve

years with the exception of the solar array drive

assembly. Adequate redundancy is provided in

the solar array drives to complete the 24 year

mission. The ACS components (except the solar

array drives) are contained in the earth facing

panel and are replaced as an entire assembly.

2.2.3 Propulsion Subsystem

The spacecraft is placed into geosynchronous or-

bit by the OTV, which eliminates the need for a

large apogee kick motor and reduces the mass of

the propulsion subsystem.
Based on tradeoff studies, it is decided to use a

bipropellant system. Mono and bipropellant sys-

tems were compared - over a 24 year mission a

bipropellant system saves 72 kg of station keep-

ing fuel versus a monopropellant system while

only adding 21 kg mass. The bipropellant sys-

tem can be refueled with fuel scavenged from the

OMV bipropellant tanks. This eliminates hav-

ing to carry additional fuel tanks or the Orbital

Spacecraft Refueling System (OSCRS), which in

turn reduces the servicing mission transportation

costs.

The propulsion subsystem contains remote fu-

eling couplings similar to designs proposed by

Fairchild and Moog, but does not have any sig-

nificant changes to its topology. Replacement of

the lines, isolation valves, and thrusters is not

necessary since these components should be able

to last the entire 24 year mission.

2.2.4 Electrical Power Subsystem

The only significant change to the power sub-

system is in the design of the solar arrays for

a 24 yr mission. This requires increased solar

cell area and cover glass thickness to offset the

increased degradation of a 24 yr versus 12 yr
mission. Non-regulated and partially regulated
buses were evaluated but the increase in mass

offsets the advantage gained in the flexibility in-

herent in these systems.

2.2.4.1 Solar Array Alternatives. Several

types of arrays were considered as alternatives to

silicon cells. One alternative was to use different

cells such as gallium arsenide (GaAs) or Indium

Phosphide. The GaAs cells are approximately

50% more radiation resistant than silicon cells,

which implies that less degradation margin is re-

quired. Current data indicates that the power

to mass ratio (W/g) for GaAs is 50% less than

that of the projected thin silicon cells. In addi-

tion, GaAs cells are several times more expensive
than silicon cells.

There is not sufficient data to evaluate the

indium phosphide cells, but current data indi-

cates that they do not experience severe radia-

tion degradation. As this technology matures, it

may be a viable alternative.
The final alternative considered is a roll out

type solar array. In this configuration the ar-

ray is partially deployed at launch, but a portion

of the array remains protected in a storage can-

nister that provides shielding. As the array de-

grades, additional array is deployed to increase

the power output. However, the additional mass

and added complexity of this type solar array off-

sets the advantage of the reduced degradation.

2.2.4.2 Use of Power Margin. In order to

compensate for degradation and/or failure of the

solar cells, additional array area must be added

to compensate for the lower output at the end

of life. This results in a large power margin dur-

ing the first 12 years as shown in Figure V-8.

This power margin can be used to support up

to 4 additional Ku-band transponders during the

first 12 years. When the satellite is serviced in

year 12, the Ku-band payload is replaced with

a payload package containing only 30 transpon-

ders. The power curves for the revised scenario

are shown in Figure V-9. In order to support

the load during eclipse, slightly larger batteries

axe required during the first 12 years. During the

servicing mission the batteries are replaced with
the standard size batteries.

2.2.4.3 Batteries. The batteries and con-

trol electronics for the power subsystem are ex-

changed after 12 years. The batteries are con-
tained in a separate module on the south panel.

The power control electronics and regulators are
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Figure V-9: Power - Added Transponders

contained in the house keeping module on the

earth facing panel. The shunt regulators are not

replaced since they will last the entire mission.

During the initial phase of operation, there is

a large power margin. In order to maintain the

bus voltage within 42 +15 V dc, it is necessary

to dissipate the excess power. During the initial

operation period, power regulation is provided

by shunt and switching regulators. As the arrays

degrades, additional strings could be switched in

and/or dissipative loads removed.

2.2.5 Telemetry, Tracking, Command

The Telemetry,

Tracking, and Command (TT&C) subsystem re-

mains unchanged from the baseline design. The

TT_zC transponders and electronics are replaced

after 12 years. The TT&C components are con-

tained in the house keeping module on the earth

facing panel.

2.2.6 Control Electronics Subsystem

There are no changes to the Control Electron-

ics Subsystem (CES) from the baseline design.

The CES components are contained in the house

keeping module and are replaced after 12 years.

2.2.7 Thermal Control Subsystem

Modularity significantly affects the thermal sub-

system since heat transfer across modules is very

difficult to achieve. Each module is thermally iso-

lated from the others, and independent thermal

control is required for each module. Thermal iso-

lation is achieved by insulating the modules with

multilayer thermal blankets. The heat pipes and
associated radiators are built into the commu-

nication payload modules and are replaced with

their respective modules. The heaters and ther-
mal blankets contained in the various modules

are replaced with the modules. Heaters and in-

sulation for the propulsion subsystem are not ser-

viced, and therefore sufficient redundancy is pro-

vided to complete the entire 24 year mission.
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2.2.8 Payload

The only changes to the payload are to the an-
tennas and the initial number of Ku-band tran-

sponders. The antennas are designed for manual

deployment at the Space Station and therefore do

not have any deployment mechanisms. The num-

ber of Ku-band transponders is increased to 34

for the initial 12 years to utilize the excess power

availability in the first half of the mission. With

the exception of the antennas and their associ-

ated feeds and waveguides, the entire communi-

cations payload is to be replaced after 12 years.
The Ku-band and C-band transponder compo-
nents are contained in modules on the north and

south panels, respectively.

2.2.9 Structure and Mechanisms

The closed architecture satellite is designed to

be integrated on the ground and launched to the

Space Station as a complete unit. This means

that the structure must be capable of withstand-

ing launch loads encountered during a Shuttle

or CELV launch. The deployed spacecraft must

be capable of withstanding 0.1 G transfer orbit
loads.

The satellite is placed into geostationary orbit

by the OTV and therefore must have an OTV

compatible interface. A concept for an OTV in-

terface is shown in Figure V-10. In addition,

docking interfaces are required for the OMV. The

OMV docking interface is shown in Figure V-

11. Access ports for servicing are required on the

earth facing module and either the east or west

facing module.

The satellite is designed for deployment and

checkout at the Space Station. Therefore, the

antenna and solar arrays do not have deploy-

ment mechanisms. They are instead designed

for deployment by the Flight Telerobotic Servicer

(FTS).

In addition, the satellite is designed for remote

servicing by the Integrated Orbital Servicing Sys-

tem (IOSS). The IOSS allows a great deal of fiex-

ibility in the design of the spacecraft/ORU inter-

face. One of the candidate designs developed by

Martin Marietta is shown in Figure V-12.

The satellite also has external EVA grapple

points for handling at the Space Station, and the

design must be compatible with EVA Design Cri-

teria (JSC-10615).

The additional scarring for handling at the

Space Station and remote servicing imposes mass

penalties on the mechanical integration compo-
nents and the structure. The net effect of the

required design modifications for this scenario is

a 17% increase in the spacecraft dry mass. The

predominate mass increases are in the structure

and power subsystem.

2.3 Open Architecture Design

The open architecture modular design allows

subsystem level assembly at the Space Station

and allows payload redundancy to be added and

bus components to be replaced at the end of 12

years. Used and/or failed ORUs are stored on

the satellite, eliminating the need for de-orbiting

used components.

The individual subsystems are integrated on

the ground and launched to the Space Station as

modules. Final assembly and system level tests

are performed at the Space Station.

The mass summary for this configuration is

given in Table V-10, and the power summary is

given in Table V-9 The open architecture satel-

lite design is shown in Figure V-13. Figure V-14

shows the subsystem modules and the satellite
structure.

The description of the open architecture design

is divided into the following subsections:

1. Configuration

2. Attitude Control Subsystem

3. Propulsion Subsystem

4. Electric Power Subsystem

5. Telemetry, Tracking, Command

6. Control Electronics Subsystem

7. Thermal Control Subsystem

8. Payload

9. Structure and Mechanisms

V - 20



$

L

TRUSS
BEAM

/
.0

"1

\

3 HARDPOINT ATTACHMENTS
ON CENTRAL CYLINDER OF
SUPPORT MODULE

, !

SUPPORT
MODULE 3 RADIALLY

ADJUSTABLE HARDPOINT
ATTACHMENTS ON SBOTV

Figure V-10: OTV/Satellite Interface

TARGET
(FOR WRIST TV)

BASE PLATE

RANGE AND
R_L LINES

ELECTR ICAL CONNECTOR

GRAPPLE SHAFT

GUIDE RANP

Figure V-11: OMV Docking Interface

V-21



_ACECRAFT
ELECTRICAL
CONNECTOR

SPACECRAFT
STRUCTURE

PAYLOAD

GUIDE

MODULE
ELECTRICAL
CONNECTOR

Figure V-12: ORU/Satellite Interface

V - 22



FigureV-13: OpenArchitectureSatellite
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SatelliteComponent
C-bandtransponders
Ku-bandtransponders

Total (Payload)

Power(W)
Years1-12 Years

Solstice Eclipse Solstice
660 660 660

3,791 3791 3,345
4,451 4,451 4,005

12-24
Eclipse

660
3,345
4,005

TT&C

Attitude control subsystem

Propulsion subsystem

Power subsystem

Thermal subsystem

Control electronics subsystem
Harness loss

30

113

2

42

131
80

44

30 30

96 113

2 2

42 42

75 131

80 80

43 44

Total(Bus)

Battery Charging
Total satellite load

422 368

146 0

5,019

30

96

2

42

75

80

43

422 368

133 0

4,873 4,560 4,373

I Solar array capacity (EOL) [ 4,877 0 [ 4,450 0 I

Table V-9: Power Summary for Open Architecture Satellite

2.3.1 Configuration

The configuration for the open architecture de-

sign allows final assembly at the Space Station.

The configuration is a truss structure consist-

ing of 3 m graphite epoxy truss elements with

a graphite epoxy central cylinder mounted in the

center truss section. The entire truss assembly is

encased in multilayer thermal insulation to min-

imize thermal distortions. The subsystem and

payload modules are affixed to the truss struc-

ture via IOSS-compatible interface mechanisms.

The open architecture provides for future

growth through the addition of payload modules

during a scheduled servicing operation. The bus

is scarred to provide storage for the used house

keeping ORUs, and therefore eliminates the need

for disposal of servicing debris.

The configuration consists of the following
modules:

i. Ku-band payload components are mounted

in a single module on the north panel of the

west end of the truss assembly.

ii. C-band payload components are mounted in

a single module mounted on the north panel

of the east end of the truss assembly.

iii. Batteries are mounted in a single module on

the north panel of the truss structure on the

east end of the truss assembly.

iv. House keeping equipment is in two modules

attached to the earth facing panel of the cen-

ter truss section. (Includes attitude control

equipment.)

v. A non-replaceable central cylinder module

contains the propellant tanks, OTV inter-
face and truss structure for the center truss

section.

These modules are the orbital replacement units

(ORUs) that can be serviced, with the exception
of item v.

The open architecture satellite is designed to
be assembled with a minimum amount of EVA.

The truss structure for the central section of

the bus and the subsystem modules are trans-

ported to the Space Station as complete assem-

blies. The remaining truss structure and ther-

mal blankets are completely assembled and inte-

grated at the Space Station. This configuration
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Mass (kg)
Years Years

Satellite Component 1-12 12-24

C-band transponders
C-band antenna

Ku-band transponders
Ku-band antenna

Total (Payload)

TT&C subsystem

Attitude control subsystem

Propulsion subsystem

Power subsystem

Thermal subsystem

Control electronics subsystem
Structure

Harness

Mechanical Integration

Total (Bus)
Stored mass

Total satellite (dry)

Propellant (12 years)

Total satellite (BOL)

72 72

17 17

336 290

26 26

451 405

16 16

66 72

75 75

335 322

147 147

51 51

533 533

70 70

52 52

1,345 1,338
0 811

1,796 2,554
476 686

2,272 3,240

Table V-10: Mass Summary - Open Design

also has the necessary interfaces for the OMV
and the OTV as described in Subsection V-2.2.9

for the closed architecture satellite, and is com-

patible with EVA design criteria.

2.3.2 Attitude Control Subsystem

The attitude control subsystem is similar to the

baseline configuration described in Subsection

V-1.2.2, and consists of momentum wheels and

magnetic torquers. Only the size of the actua-

tors is scaled up to account for the changes in
the moments of inertia. The attitude control

actuators are mounted in the innermost house

keeping module and are replaced after 12 years.

The replacement components also are scaled up
to account for the increase in inertia after ser-

vicing. The control software and algorithms are

also modified in the replacement components to

account for the change in the dynamics of the

spacecraft.

2.3.3 Propulsion

The changes to the propulsion system are simi-
lar to those discussed in Subsection V-2.1.3 for

the closed architecture satellite. The only addi-

tional change is the provision for added propel-

lant capacity to account for the increased propel-

lant consumption following the servicing mission.

Servicing of the propulsion system is limited to

the replenishment of the liquid propellants.

2.3.4 Electrical Power Subsystem

The electrical power system remains unchanged
from the baseline and the closed architecture de-

signs. Additional solar array capacity is provided
to offset the effects of degradation and to provide

increased capacity for the additional transpon-

ders added during the servicing mission.

The batteries and converters are the only ele-

ments of the electrical power subsystem that are

serviced. The batteries axe replaced with a new

assembly placed on the south end of the truss.

2.3.5 Telemetry, Tracking, Command

The TT&C subsystem remains unchanged from

the baseline design. The TT&C subsystem corn-
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ponentsarecontainedin thehousekeepingmod-
ulesand areexchangedafter 12years.

2.3.6 Control Electronics Subsystem

There are no changes to CES from the baseline

design. The CES components are contained in

the house keeping module and are replaced after

12 years.

2.3.7 Thermal Control Subsystem

The changes to the thermal control subsystem
are identical to those made for the closed archi-

tecture satellite described in Subsection V-2.2.7.

2.3.8 Payload

The payload is similar to that for the closed ar-
chitecture satellite described in in Subsection V-

2.2.8. It is completely modular with separate

modules for the C-band and Ku-band transpon-
ders and antennas.

The entire payload is to be replaced and up-

graded after 12 years life. The additional tran-

sponder and switching packages are placed on the

east and west ends of the satellite directly op-

posite the original units. Additional waveguide

switches are required to prevent rf leakage dur-

ing the first twelve years life. Additional switch-

ing capacity is also required to provide intercon-

nections between the primary and replacement
units.

The replacement components are added during

the servicing mission and could operate in par-

allel with the functional transponders in the pri-

mary payload. According to reliability curves for

typical communications systems, it is estimated

that 26 C-band and 21 Ku-band transponders

will be functional after 12 years of operation. At

the 12-year servicing mission an additional 24 C-

band and 30 Ku-band transponders are added,

yielding a total capacity of 50 C-band and 51

Ku-band transponders.

The only part of the payload that is not ser-
viced is the antennas. The antennas are designed

for a 24 year mission lifetime.

2.3.9 Structure and Mechanisms

The basic structure of the spacecraft is a graphite

epoxy truss structure with a central cylinder to

provide an adequate load path during launch.
The assembled structure is sized for launch loads

up to 0.1 G. This figure is based on previous ex-

perience with geostationary platform studies and

deployed load capacities of solar arrays.

The ORU/module interfaces, solar arrays, and

antennas are permanently attached to the struc-

ture. Additional mechanical, power, wave guide,

and data interfaces are provided for the replace-

ment modules on the south panels of the bus.

Mechanical interfaces are provided on the earth

facing panels for storage of the spent house keep-

ing modules. The configuration also includes the

appropriate scars and interfaces required by the
servicer and OMV as discussed in Section V-

2.2.9.

The satellite is designed for complete assem-

bly, deployment, and test at the Space Station

and therefore does not contain any deployment

mechanisms. The design complies to the guide-

lines specified for EVA Design Criteria.

3 Assembly and Launch Oper-

ations

Assembly and launch operations are explained

for the different satellite designs.

3.1 Introduction

The baseline non-modular (Subsection V-1.2)

and refuelable modular (Subsection V-2.1) satel-

lite designs can be launched on either an expend-
able booster or the STS. The BOL wet mass of

these satellites is 1,665 kg which is within the

capabilities of several expendable boosters or an
TOS and STS combination. The launch costs are

shown in Table V-11. The figure for the Ariane

scenario assumes a slight expansion in the launch

capacity of the Ariane 4 to allow a dual launch.

The baseline satellite does not use the Space

Station as a transportation node and therefore

is not designed to utilize the services provided

by the Space Station. Both the closed and open
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Capital Expenditure Item

Spacecraft cost

Transportation charges

OMV/OTV costs

Space Station support

Mission operations
Launch insurance

Totals

Cost ($M, 1987)

Ari .ane 4... STS/TOS

64.2

42.3

2.6

27.3

64.2

4O.0

2.6

27.0

133.8 136.4

ILV/OTV

 4.2
34.2

6.1

1.6

2.6

13.5

122.2

Table V-11: Transportation Charges for Baseline or Refuelable Satellites

architecture satellites are designed for assembly,

deployment, test, and launch from the Space Sta-
tion.

The assembly and launch scenarios are devel-

oped assuming that the following services are

provided:

• Rendezvous and docking system for the STS.

• Mobile Remote Manipulator System

(MRMS)

• Storage/transfer facility for monopropellant

hydrazine, mono-methyl hydrazine (MMH),

nitrogen tetra-oxide (NTO), liquid hydro-

gen, liquid oxygen and nitrogen gas.

• Environmentally controlled storage area in

the Customer Servicing Center (CSC).

• CSC contains interfaces to the Space Station

power and data management systems.

• Space Station based OMV and OTV.

• An operational Flight Telerobotic Servicer

(FTS).

• A communications system capableofprovid-

ing a linkbetween a ground controlfacility

and the satellite.

• Extra Vehicular Activity (EVA) support

equipment and standard tools.

• Video and communications links between

pressurized module and the CSC.

• Antenna range test equipment.

3.2 Closed Architecture Design

The closed architecture satellite (also known as

the FS-1300 M1) presented in Subsection V-2.2 is

designed to be launched to the Space Station as

an integrated unit on expendable booster such

as the Atlas H, the Industrial Launch Vehicle

(ILV), or the STS. The spacecraft is deployed

and checked out at the Space Station and then

transported to GEO by the OTV. The complete

transportation, deployment, test and launch sce-
nario is shown in Table V-12 and is described

below.

3.2.1 Transportation to Space Station

The spacecraft is launched to low earth orbit

(LEO) on either an expendable booster or the

STS. If the shuttle is used, the spacecraft is trans-

ported directly to the Space Station. After the

shuttle has docked to the Space Station the cargo

bay is unloaded by the Mobile Remote Manipu-

lator System (MRMS). The MRMS then trans-

ports the spacecraft to the Customer Servicing

Center (CSC) for deployment and checkout.

If an expendable booster is used, the space-

craft is placed into a parking orbit outside the

Space Station control zone. The space-based

OMV (SB-OMV) is dispatched to retrieve the

spacecraft from the parking orbit. Because the

rate of nodal regression is greater for lower alti-

tude orbits, the OMV must retrieve the payload

from the launch vehicle as soon as possible to

avoid costly plane change maneuvers.

The OMV grapple fixture is attached to a com-
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1. Launch stowed satellite on a shared Shuttle flight to Space Station,
or launch stowed satellite on an Atlas H to a 240 nm orbit.

2. OMV retrieves satellite and returns with it to Space Station.

3. MRMS transfers satellite to storage area.

4. Attach power and data lines to satellite

5. EVA astronauts perform physical inspection.

6. Deploy antennas and solar arrays on satellite.

7. Perform subsystem and system level tests.

8. Perform rf testing.

9. Mate satellite to OTV payload adapter.

10. Transport satellite to fueling depot via OMV.

11. Fuel satellite and perform propellant leak tests.
12. Mate satellite with OTV.

13. OMV transports the OTV plus satellite out of Space Station control zone.

14. OTV transports satellite to GEO

15. Satellite is deployed in GEO from OTV.

16. OTV performs de-orbit and aerobraking maneuvers.

17. OMV rendezvous and returns OTV to Space Station.

Table V-12: Launch Scenario for the Closed Architecture Satellite

patible fixture on the spacecraft. The OMV then

performs the delta velocity and phasing maneu-

vers necessary to transport the spacecraft to the

Space Station. Once the OMV arrives at the

Space Station, it docks and the payload is re-

moved from the OMV and transported to the

CSC by the MRMS.

3.2.2 Deployment and Test Operations

Once in the CSC at the Space Station, the space-

craft is attached to a mechanical interface by the

MRMS. The umbilicals connecting the satellite

to the Space Station power and data manage-

ment systems are made by the FTS. A physical

inspection of the spacecraft is performed by as-

tronauts inside the pressurized module using the

video system on the FTS. Any damage or phys-

ical defects in the spacecraft is corrected either
by =extra:vehicular activity by the astronauts or

remotely with the FTS.

After the vehicle checks out satisfactorily,

power is supplied to the vehicle and its central

electronics subsystem (CES) and the TT&C sub-
systems activated. The _]_ _and:TT_C subsys-

tems are required to provide verification of de-

ployment of the C and Ku-band antennas and

solar arrays. The payload antennas and solar

arrays are then deployed by the FTS as shown

in F_gure V-15. The depioyment operations are

contr0l]ed and monitored by astronauts_ in the

pressurized module. Telemetry from the Space-

craft is also provided to a ground operations cen-

ter for analysis and verification.

Following verification of deployment, subsys-

tem level Checkout of the satellite is performed.

Test inputs are supplied to the satellite through

the Space Station data management system. The
response of the subsystems to the stimuli is mon-

itored by Space Station and ground operations

center personnel. If a failure is detected, it is

repaired at this time. If the failure requires re-

placement of a component, the entire subsystem

module is replaced.

Due to space limitations, it is unlikely that re-
placement components are stored at the Space

Station. A supply of replacement ORUs should

be maintained on the ground ready for launch

on the next available flight. The satellites are

stored in the CSC until the replacement part ar-

rives. Once the spare part has arrived, the repair
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CUSTOMER SERVICE CENTER MRM$

Figure V-15: Deployment of Spacecraft Appendages by the Flight Telerobotic System

is performed by the FTS under astronaut super-

vision. After all repairs have been completed, the

satellite subsystem level tests are repeated.

Following the checkout of the bus and payload

subsystems, the spacecraft is transported by the

MRMS to a test facility for verification of payload

and TT&:C performance characteristics. The rf

testing is monitored by ground and Space Station

personnel. If any failures are detected, the satel-

kite is returned to the CSC for storage and/or
repairs.

Once the satellite has been satisfactorily

tested, the MRMS transports it to a storage
area inside the CSC. The satellite is connected

to the power and data management systems and

is placed in a storage mode until the subsequent

assembly of other spacecraft and/or OTV pre-

launch checks have been completed.

3.2.3 Launch Operations

The space-based OTV can place up to 13,680 kg

of payload into GEO (Martin Marietta Phase A

Study). This means that up to six of the closed

architecture spacecraft can be launched on one

OTV flight. It is unlikely that the mission would

be dedicated to a single satellite and therefore the

scenario has been developed for a dual spacecraft

launch. Each spacecraft is charged one half of the
OTV launch charges.

3.2.3.1 Operations at the Space Station.

The launch operations begin with the attachment
of the spacecraft to the OTV payload adapter.

The payload adapter provides mechanical, elec-

trical, and data interfaces between the OTV and

the spacecraft. The MRMS attaches the pay-

load adapter to a surrogate OTV interface that

is attached to the Space Station keel structure.

After the adapter has been attached, the MRMS

retrieves the first spacecraft from the CSC stor-

age area. The spacecraft is attached to the pay-

load adapter by EVA astronauts and/or the FTS.

This procedure is repeated until all spacecraft

have been attached. A final inspection of the en-

tire assembly is performed by EVA astronauts,

and the spacecraft telemetry is monitored by the

ground operations center. The attachment oper-
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FS-1300-M2
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Figure V-16: Attachment of Satellite to the OTV via a Payload Adapter

ation is shown in Figure V-16.

After both spacecraft have been mated to the

payload carrier, the entire assembly is inspected

by EVA astronauts. Following the inspection,

the MRMS grapples the payload carrier and posi-

tions it for mating to the OMV. The connections

to the OMV are made by EVA astronauts and/or
the FTS. Once the connections are made and ver-

ified, the OMV transports the payload carrier to

the fueling depot. The OMV uses cold gas jets in

the vicinity of any Space Station structure, bul;

elsewhere it uses monopropellant thrusters.

3.2.3.2 Fueling _. Operations.

After the OMV has docked to the fuel depot,

the fueling umbilical line is connected to the first

spacecraft. Since refueling is a potentially haz-

ardous operation, it is recommended that the en-

tire operation be automated. This requires either

that the fueling facility have its own dedicated

robotics or that the OMV transport the FTS to

the facility. After the umbilical connections are

verified, the fluid transfer proceeds under con-

trol of Space Station and ground operations cen-

ter personnel. Before the fueling umbilicals are

removed, propellant leak tests are performed to

verify the integrity of the propellant plumbing

and valves. Following the leak test, the umbil-
ical lines are disconnected and attached to the

next satellite. This procedure is repeated until

all spacecraft are fueled.

3.2.3.3 OTV Launch Operations. Upon

completion of the satellite fueling operation, the
OMV transports the payload adapter to the

OTV staging area. The MRMS is used to demate

the adapter from the OMV and to position it for
attachment to the OTV' The mechanical, power,

and data connections to the OTV are made by

EVA astronauts and/or the FTS. Once all the
connections have been made, the entire assembly

is inspected by EVA astronauts and system level

checks are made by the crews inside the Space

Station and in the ground operations center.

After all checks are completed, the OMV is
mated to the OTV. The OMV then moves the

OTV away from the Space Station using its cold

gas thrusters. Once clear of the Space Station
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and the free flying platforms, the OMV uses its

monopropellant thrusters to move the OTV out-

side the Space Station Control Zone. The OMV

then separates from the OTV and returns to the

Space Station.

After OMV separation, the OTV receives an

ephemeris update from the Global Positioning
System (GPS) satellites and orientates itself for

the first burn for injection in Geostationary

Transfer Orbit (GTO). The OTV performs incli-
nation and circularization burns for insertion into

an equatorial, geostationary orbit. It is also pos-

sible to place the spacecraft in a slightly subsyn-

chronous orbit, giving it a slight eastward drift.

This results in a slight propellant savings pro-

vided the orbit injection are optimized so that

none of the satellites require a westward drift.

Detailed mission analysis of the deployment of

the spacecraft is beyond the scope of this study.

The OTV deploys the satellites individually and

provides adequate separation between satellites

to prevent collisions.

3.2.3.4 OTV Return to Space Station.

After the last satellite is deployed, the OTV per-

forms a de-orbit burn to place it in the proper

aerobraking trajectory. During the aerobraking

maneuver, the OTV not only reduces the apogee

of its orbit but also performs a plane change to

a 28.5 ° inclination. Use of aerodynamic forces to

reduce the apogee and perform the plane change

results in a substantial fuel savings. After ex-

iting from the aerobraking corridor, the OTV

performs orbit raising and circularization burns

necessary for rendezvous with the Space Station.
The SB-OMV is used to retrieve the OTV and

return it the processing area.

3.2.4 Time/Costs for Mission

A mission timeline for the OTV launch is shown

in Table V-14. It is estimated to take 169 hr

Internal Vehicular Activity (IVA) and 2 hr Ex-

ternal Vehicular Activity (EVA) of Space Station

crew time to deploy, test and launch the satellite.
The launch costs and crew hours are shown in Ta-

bles V-13 and V-15, respectively. (The trans-

portation cost to the Space Station is based on

Capital Expenditure Item

Satellite

Transportation to Space Station

Launch support
OTV fuel

Space Station charges

OMV/OTV fees

Mission operations

Insurance (11%)
Total

8.0

1.6

3.0

6.1

2.6

Table V-13: Launch Costs (Closed Design)

use of the American Rocket ILV at $4,400/kg.)

3.3 Open Architecture Configuration

The open architecture configuration (also known

as the FS-1300 M2) presented in Subsection V-

2.3 is designed to allow subsystem level assem-

bly, deployment, and test at the Space Station.

This design enables the individual components to

be transported to the Space Station over several

different launches. The components can then be

assembled and the complete spacecraft tested by

the Space Station crew. The vehicle is placed into

GEO by the OTV. The complete scenario for the

Space Station operations is shown in Table V-16
and is described below.

3.3.1 Transportation to Space Station

The decision to fully integrate the payload and

bus subsystem modules on the ground prior to

launch is primarily made from a reliability stand-

point. Secondary considerations are the level

of effort and support required to perform these

tasks at the Space Station.

Figure V-l? depicts the decision tree associ-

ated with the level of integration to be performed

at the Space Station. The various options con-

sidered ranged from no preliminary assembly to

assembly and test of subsystem modules on the

ground. Launch of individual components rep-

resents the largest program cost option, in spite
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MissionEvent

OMV movesOTV out of SpaceStationcontrolzone.
First perigeeburn by OTV.
Secondperigeeburnby OTV.
Third perigeeburnby OTV.
Fourthperigeeburn by OTV.
Apogeeburn by OTV.
Trim burn by OTV.
Deployfirst satellitefrom OTV.
OTV performseast-westseparationmaneuver.
Deploysecondsatellitefrom OTV.
OTV performsde-orbit& aerobrakingmaneuvers.
OTV performsorbit raisingmaneuversto 240nm.
OMV transfersOTV to SpaceStationdockingarea.
MRMSgrapplesOTV anddocksto Station.

TableV-14: MissionTimelinefor OTV Launch of Closed Architecture Satellite

Space Station Crew Activity

Review procedures for cargo off-loading

Remove satellite and transfer to storage

Connect power/data lines to satellite

Inspection and test

Review deployment checklist

Deploy appendages

Review fueling procedures/checklists

Transfer satellite to fueling port
Fuel satellite

Mate satellite with payload adapter

Launch/recover OTV
Total Crew Time

Table V-15: Space Station Crew Time - Closed Architecture Satellite
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1. Launch satellite components on shared Shuttle flight(s) to Space Station, and/or

launch satellite components on expendable booster(s) to a 240 nm orbit.

2. OMV retrieves booster payload and returns with it to Space Station.

3. MRMS transfers components to storage area.

4. Components are stored in controlled environment until assembly.

5. Attach power and data lines to subsystem modules.

6. EVA Space Station astronauts perform physical inspection of components.

7. Subsystem level tests of modules are performed.
8. Assemble truss structure.

9. Assemble propulsion subsystem.
10. Attach harness and electrical connectors to structure.

11. Attach module and antenna interfaces to structure.

12. Attach thermal blankets to truss structure.

13. Attach modules and antennas to truss structure.

14. Install solar arrays.

15. Perform subsystem and system level tests.

16. Perform rf testing.
17. Mate satellite to OTV payload adapter.

18. Transport satellite to fueling depot via OMV.

19. Fuel satellite and perform propellant leak tests.
20. Mate with OTV.

21. OMV transports OTV plus satellite out of Space Station control zone.

22. OTV transports satellite to GEO.

23. Satellite deployed in GEO by OTV.

24. OTV performs de-orbit and aerobraking maneuvers.

25. OMV rendezvous and returns OTV to Space Station.

Table V-16: Assembly/Launch Scenario for Open Architecture Satellite
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Assembly Options

No Assembly at

Space Station

Deploy & Test at

Space Station

Subsyslem Level

Assembly at

Space Station I

t! Restricts spacecrafl configuration

Increased insurance costr,

Limits vehicle size

• Reduced insurance costs |

• Increased integration & IB_ costs J• Reduced risk

• Increased transportation costs
• Configuration constraints

• Alternative launch scer_rk)s

• Reduced insurance costs

• Possibility of reduced launch costs

• Reduced design constraJnt$

Figure V-17: Level of Integration Decision Tree

of the fact that it results in the lowest launch

charges.

A typical spacecraft is tested end-to-end on the

ground to ensure that system level performance

requirements are met. This results in either:

i. COmpletely integrating the spacecraft on the

ground, disassembling it for launch, and in-

tegrating it again at the Space Station, or

ii. Unit level checkout on the ground and sys-

tem level integration and test at the Space
Station.

The latter option is most cost effective since

it reduces the amount of test and integratl0n.

Thus the spacecraft is launched as completely in-

tegrated and tested modules. The modules can

be transported to the Space Station over several

launches and assembled by astronaut and/or the

FTS. This decision opens up the possibility of

new transportation scenarios where components

are manifested On launch vehicles on a space

available basis. The spacecraft components are
unloaded from their launch vehicle and stored in

the CSC as described in Subsection V-3.2.1. The

components remain in Storage until the all pieces

of the spacecraft are transported to the Station.

V

A pricing policy could be developed to encour-

age users to spread the transportation of a space-

craft t0t_h_e- Space Station over several launches.
This in turn would encourage complete_ utiliza-

tion of available launch throw weight and fairing
volume. This scenario is attractive "from an in-

surance standpoint as it distributes, the risk over

several launches and minimizes the potential loss

on any single launch.

3.3.2 Assembly Operations

As the spacecraft components arrive at the Space

Station, they are transported to the storage fa-

cility and placed in a storage rack by the MRMS.
POwer and _data lines are connected by the FTS

or EVA astronaut. After the all the connections

are made, the module undergoes system level

tests. The tests are performed by the crew in-

side the pressurized module and are monitored
on the earth. If a failure is detected in a sub-

system module, the module is returned to the

ground for repair and a replacement sent up to

the Station. This procedure is repeated for all

subsystem modules. A similar procedure is fol-

lowed for the structure and antennas except they
are not tested at the Space Station.

The assembly operations begin after all mod-
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ules are received and tested. The first opera-
tion is to attach the truss structure to the central

cylinder. The center truss assembly is attached

to a surrogate OTV interface by the MRMS. The

truss structure is then attached by the leTS or

EVA astronaut. Once the truss is assembled, the

propulsion system is installed. This entails con-

necting the propellant lines to the valves, tanks,

and thrusters and attaching the lines, valves and

thrusters to the truss structure. This operation

is performed most effectively by EVA astronauts.

The truss assembly operation is shown in Fig-
ure V-18

After the propulsion system is installed, the

remaining interface hardware, waveguides, and
harness is assembled and attached to the truss

structure. This operation is performed by EVA
astronauts with some assistance from the leTS.

Once this operation is complete, the thermal

blankets are attached to the truss structure by
EVA astronauts.

The next step in the assembly is the installa-

tion of the solar arrays. The Solar Array Drive

Assemblies (SADAs) are attached to the truss

structure by EVA astronauts. The solar array

masts are then deployed and moved into position

for assembly by the leTS. The final connection to

the SADAs is performed by EVA astronauts.

The final assembly step is to attach the an-

tenna, payload, and house keeping modules. This

operation is performed by the leTS using a spe-
cial module interface tool. The leTS removes the

modules from the storage rack and inserts them

into the spacecraft/module interface. Once the

module is inserted into the interface, it is locked

into position using the interface tool. This pro-

cedure is repeated until all of the modules are

attached. The module installation operation is

shown in Figure V-19

At this point the assembly operations are com-
plete and the leTS returns the tools and other as-

sembly equipment to the appropriate storage lo-

cations. The next operations are the deployment

of the solar array panels, system level testing,

fueling, and mating with the payload adapter.

These operations are described in Subsection V-
3.2.2.

Capital Expenditure Item

Satellite

Transportation to Space Station

Launch support
OTV fuel

Space Station charges

OMV/OTV fees

Mission operations

Insurance (11%)
Total

Table V-17: Launch Costs (Open Design)

3.3.3 Launch Operations

The open architecture configuration uses an

OTV launch and the launch operations are sim-
ilar to those described in Section V-3.2.3 for the

closed architecture configuration.

3.3.4 Time/Costs for Mission

A mission timeline for the OTV launch is the

same as shown in Table V-14 for the closed archi-

tecture satellite. However, IVA and EVA times

are longer - it is estimated to take 169 hr of
EVA and 46 hr of IVA crew time to assemble

and launch a single satellite. The estimated cost

involved in these processes is $134 M. The launch

costs are given in Table V-17, and the Space Sta-
tion crew hours are shown in Table V-18.

4 Servicing Scenarios

The baseline business-as-usual satellite described

in Subsection V-1.2 does not have any provi-

sions for on-orbit servicing. A program lifetime

of 24 years is achieved by launching a replace-

ment satellite after the initial 12 year lifetime is

complete.

For purposes of comparison, the study assumes

a constellation of two satellites placed at 84 ° W

and 144 ° W longitude. This assumption is made
for the three scenarios discussed in this subsec-

tion. since the satellites have a 12 year design
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FigureV-18: TrussAssemblyOperation

/
/

Figure V-19: Module Installation Operation
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SpaceStationCrewActivity
Reviewproceduresfor cargooff-loading
Removesatelliteandtransferto storage
Connectpower/datalinesto satellite
Inspectionandtest
Reviewassembly/deploymentchecklist
Assemblyoperations
Deployappendages
Reviewfuelingprocedures/checklists
Transfersatelliteto fuelingport
Fuelsatellite
Matesateilitewith payloadadapter
Launch/recover OTV

Total Crew Time

Table V-18: Space Station Crew Time - Assembly/Launch of Open Architecture Satellite

life, the replacement satellites are launched dur-

ing year 12, and the original satellites are boosted

into supersynchronous orbit at the end of year 12.

4.1 Scenario for Refuelable Design

The modified baseline design has sufficient fuel

for 8 years of normal operation. A refueling mis-

sion is scheduled during the third quarter of year

7. It is assumed that the refueling mission is com-

bined with other servicing, retrieval or launch op-
erations and that the mission costs are divided

among the users according to payload mass. In

addition, it is assumed that two satellites are fu-

eled during the same mission. The operational

flow of the refueling scenario is shown in Fig-
ure V-20.

4.1.1 Operations at the Space Station

The fueling mission begins at the Space Station

with the integration of the fueling kit, remote

servicer, OMV with the OTV. This operation is

performed with the MRMS and/or EVA astro-

nauts. The assembly is inspected by EVA astro-

nauts and system checks performed by IVA as-

tronauts. The entire assembly is then transferred

to the fueling depot by the OMV. Two options

exist for transporting the fuel to GEO:

i. A dedicated fueling kit with sufficient capac-

ity to refuel several satellites is used, or

ii. If the extended range version of the OMV is

used, the propellant can be scavenged from

the bipropellant propulsion module.

The latter option is being investigated by
NASA/MSFC. However, it is unlikely that the

OMV propulsion module would be used for a

GEO servicing mission. The OTV would be used

to provide the thrust for large propulsive ma-

neuvers, and therefore the OMV would not re-

quire the added propulsion capability provided

by the bipropellant module. In addition, the

empty bipropellant module adds 760 kg of mass

to the OMV, which is much greater than the ded-

icated fueling kit.

Based on this reasoning, it is decided to use the

dedicated fueling kit. The equipment required

for the servicing operation and their respective
masses are shown in Table V-19.

4.1.2 Transport from Station to GEO

Once the fueling of the OMV, OTV, fueling kit,

and any other payload requiring fuel is complete,

the OMV cold gas thrusters are used to move

away from the fuel depot. Once clear of all criti-

cal structures, the OMV monopropellant system
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Mission Equipment/Fuel

OTV 3,734

OMV (small version) 1,675
IOSS 286

Fueling Kit 230

Total 5,925
MMH fuel 68

NTO fuel 112

Total equip. + fuel 6,105

Table V-19: Refueling Mission Mass

moves the OTV outside the control zone and into

position for the first perigee burn. The OTV

performs the necessary perigee, inclination, and

apogee maneuvers to place the OMV in GEO.

The OTV also performs the large east-west

maneuvers necessaryto rendezvous with the
satellites to be serviced. In order to minimize

the time and fuel required by these east-west

maneuvers, the mission should be scheduled so

that the maximum separation between Satellites

is less than 90 ° . For larger satellite separations,

the satellites should be moved closer together by

performing east-west maneuvers prior to the ser-

vicing mission. This is to be avoided because of
the additional revenue loss due to the increased

satellite down time.

4.1.3 Operations in GEO

Once the OTV is placed into geostationary orbit,

it performs the east-west maneuvers required to

move to the orbital slots containing the satellites

to be serviced. During the launch, rendezvous

and de-orbit phases of the mission, the OTV re-

ceives ephemeris updates from the Global Posi-

tioning System (GPS) and tracking data from the

ground. The OTV uses tracking data from the

satellite for initial rendezvous operations. The

final rendezvous operations are performed using
the OMV radar and TV cameras. The communi-

cation interfaces required to support the servic-

ing mission are shown in Figure V-21.

When the OTV moves within 3 km of the

satellite, the OMV separates and moves toward
the satellite under automatic control. When

the satellite/OMV separation is approximately

300 m, the satellite is visible with the OMV video

cameras. Once visual contact has been made, the

OMV is switched to ground control and an oper-

ator performs the final rendezvous and docking
operations under manual control.

During the final docking maneuvers, the OMV

cold gas system is used to avoid contamination

of sensitive surfaces. Prior to final docking, the

satellite's propulsion and attitude control subsys-

tems are shut down to prevent control difficulties

or plume impingements. The OMV maintains

attitude control for both vehicles during the ser-

vicing operation, eliminating the need for control

system interfaces between the two vehicles.

Once the satellite attitude control system is

shut down, the servicer arm removes the fueling

umbilical from the umbilical storage rack and at-

taches it to the satellite fueling port, as shown

in Figure V-22. Connectors are used that allow

both the monomethylhydrazine (MMH) and ni-

trogen tetraoxide (NTO) to be replenished with

a single connection. These connectors are self-

aligning and are self-latching. Once the connec-

tions have been verified, the inhibit valves open

and the fluid transfer begins. The fluid transfer

operation is monitored by the operations center

on the ground.

Upon verification that the proper amount of

fuel is transferred, the inhibit valves are closed

and the connector purged. The servicer removes

the umbilical and returns it to the storage rack.
The OMV then demates from the satellite and

backs away using its cold gas thrusters.

Once the OMV has backed away, the satel-

lite attitude control and propulsion subsystems
are re-enabled. The disturbances due to the

OMV separation may impart a slight rotation

rate about one or more of the satellite axes, but
these rotation rates should be well within the

control capacity of the satellite control system.

The attitude rates should be damped out and
the satellite returned to normal mode within 1

hour after OMV separation. Under normal cir-

cumstances, no special station keeping maneu-

vers are required due to the disturbances of the
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servicing operations.

The OMV returns to the OTV, docks, and per-
forms an east-west maneuver to rendezvous with

the next spacecraft to be serviced. This cycle is

repeated until the servicing schedule is complete.

At that point the OTV performs the de-orbit and

aerobraking maneuvers necessary to return the

OMV and servicing equipment to the Space Sta-

tion. The OMV is used for the final docking op-
erations at the Space Station. A mission timeline

for the GEO satellite refueling mission is shown
in Table V-20.

4.2 Scenario for Closed Design

The closed architecture satellite is designed to al-

low refueling and replacement of all life-limited

housekeeping and payload equipment with the

exception of the solar arrays. The ability to

service provides a mechanism for restoring the

satellite to its initial capacity without incurring
the costs of launching an entirely new spacecraft.

The subsystems that are completely or partially

replaced are shown in Table V-21.
The scenario assumes that two satellites lo-

cated as 840 W and 144 ° W are serviced on the

same mission. The servicing scenarios for both

the closed and open architecture satellites are de-

veloped for scheduled servicing missions. These

scenarios also apply in the case of emergency re-

pair of a failed satellite.

Emergency repair is a viable option only when

combined with other servicing/repair operations

or a satellite launch. The cost of transporting

the servicing equipment to GEO is prohibitive for

servicing "on demand". The overall operational

flow of the mission is shown in Figure V-23 and

is described in the following discussion.

4.2.1 Operations at the Space Station

The replacement components described above

may be transported to the Space Station via ei-

ther the shuttle or an expendable launch vehi-

cle. The replacement components are received

and transported to the CSC using the same pro-
cedures described in Subsection V-3.1.1. Once

inside the CSC, the modules are placed into an

ORU rack compatible with the OMV and IOSS.

Power and data lines are connected to the mod-

ules for monitoring and thermal control purposes.

Prior to the servicing mission each of the mod-

ules undergoes subsystem level tests. If a failure

is detected, a spare is launched on the next avail-

able flight and the failed module is returned to

the ground for repair.

Once all the modules have been checked out,
the power and data lines are removed and the

MRMS positions the ORU rack for integration
with the OMV. The integration of the remote ser-

vicer, the ORU rack with the OMV is performed

by EVA astronauts and/or the FTS. Once the

integration operations have been complete, the

OMV is positioned by the MRMS for integra-

tion with the OTV. Again, the integration oper-

ation is carried out by EVA astronauts and/or
the FTS. The servicing equipment required and

their respective masses are shown in Table V-22.

Once the OMV and OTV have been integrated,

system level tests are performed by a crew inside

the pressurized module.

Following the checkout of the servicing sys-

tems, the OMV transfers the system to the fuel-

ing depot. The fueling operation is carried out as

described in Subsection V-3.1.3. Once the OMV,

fueling kit and OTV have been fueled, the OMV

moves the system outside the Space Station con-
trol zone.

4.2.2 Transport, Rendezvous, Docking

The OTV transports its cargo to GEO orbit. The

orbit insertion and initial OMV rendezvous op-
erations are identical to those described in Sub-

section V-4.1. The only minor difference in the

rendezvous and docking operations is that prior

to docking, the OMV performs a fly-by inspec-

tion under ground control. The purpose of the

inspection is to determine if any damage has oc-

curred to the satellite that might affect the ser-

vicing operations.

Following the inspection, the satellite attitude

control and propulsion is safed to prevent con-

trol difficulties during the servicing operation.

Once the satellite has been safed, the OMV docks

with the satellite. The docking operations are ex-

pected to impart some minor disturbances to the
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MissionEvent
OMVmovesOTV out of SpaceStationControlzone.
First perigeeburn by OTV.
Secondperigeeburn by OTV.
Third perigeeburn by OTV.
Fourthperigeeburn by OTV.
Apogeeburn by OTV.
Trim burn and rendezvouswith 84° satelliteby OTV.
OMV separatesfrom OTV.
OMV rendezvousanddockswith satellite.
Refuelingoperationsfor first GEOsatellite.
OMV dematesfrom satellite.
OMV dockswith OTV.
OTV performseast-westmaneuver.
OTV rendezvouswith satelliteat 144o W.

OMV separates from OTV.
OMV rendezvous and docks with satellite.

Refueling operations for second GEO satellite.
OMV demates from satellite.

OTV performs de-orbit & aerobraking maneuvers.

OTV performs orbit raising maneuvers to 240 nm.

OMV transfers OTV to Space Station docking area.

MRMS grapples OTV and docks to Station.

Table V-20: Mission Timeline for GEO Satellite Refueling Mission

Replacement

Subsystem Servicing Capacity Mass (kg)

Attitude Control

Propulsion
Electrical Power

TT&C

Control Electronics

Thermal Control

Structure

Payload

Total (replaced)

Replace all subsystem components.

Refueling.

Replace all subsystem components except

solar arrays and shunt regulators.

Replace all subsystem components.

Replace all subsystem components.

Replace blankets, heaters and radiators

associated with subsystem modules.

Replace module structure.

Replace all subsystem components except
antennas and feeds.

64

421

107

10

51

26

140

405

1,224

Table V-21: Mass Replaced During GEO Servicing of Closed Architecture Satellite
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Figure V-23: Flow of Operations During Servicing of Satellite

satellite, the largest of which will be a negative

delta velocity along the radius of the orbit. The

magnitude of this delta velocity should be less

than 6 cm/s and therefore should have only a
minor effect on the satellite orbit.

4.2.3 GEO Servicing Operations

Once the OMV is hard docked, the housekeeping

and payload subsystems are shut down to pre-

vent damage during module replacement. As-

suming the IOSS is used as the robotic servicer,

the module exchange involves the following op-
erations:

i. Remove the old module from the satellite.

ii. Invert the module for insertion into the ORU

rack on the OMV.

iii. Transport the module to a vacant location
in the ORU rack.

iv. Insert the module into the ORU rack.

v. Locate the replacement module in the ORU
rack.

vi. Remove the new module from the ORU rack.

vii. Invert it for insertion into the satellite.

viii. Transport it to the vacated location on the
satellite.

ix. Insert the new module into the satellite.

The trajectories and moves for each module

exchange operation are preprogrammed and ex-

ecuted under ground operator supervision. The

module exchange sequence takes about 10 min-

utes per module. Therefore it takes approxi-

mately 40 minutes to replace the C-band, Ku-

band, battery, and housekeeping modules. If a

change to the satellite configuration has occurred

or any difficulty arises in the real-time execution,

the operator interrupts the automated sequence
and continues under manual control until the dif-

ficulty has been resolved. The module exchange

operation is shown in Figure V-2.

Once the entire complement of modules is ex-

changed, the satellite is refueled using the same

procedure described in Subsection V-4.1. Fol-

lowing the refueling operation, power is restored

to the payload and bus subsystems, and system

level tests are performed by the ground opera-

tors. If a failure is detected, a diagnosis of the
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Mission Equipment/Fuel

OTV 3,734

OMV (small version) 1,675
IOSS 286

FuelingKit 230

Total 5,925

MMH fuel 159

NTO fuel 262

Module mass 803

Total equip. + fuel 7,149

Table V-22: Servicing Mass (Closed Design)

[ Cost I

Capital Expenditure Item

Replacement components

Transportation

Launch support

Mission operations

OMV/OTV use fees

Space Station fees
Insurance

Total

Table V-23: Servicing Cost (Closed Design)

problem is made. Since the modules are not de-

signed for remote repair, repair activities are lim-

ited to removing and re-inserting the module to
verify the power and data connections. If the

failure persists a decision must be made about

its operational impact. If the failure prevents

operation, the original module (or possibly the

spare for the second satellite) could be returned

to service until another servicing mission can be
scheduled.

Once all servicing operations are complete, the

OMV separates from the spacecraft and returns

to the OTV. Immediately after OMV separa-

tion, the satellite propulsion and attitude con-

trol subsystems are re-enabled and the satellite

is returned to a normal mode of operation. The

impact of the servicing operation on the satel-

lite should be minimal, and the resulting attitude

rates can be damped out within 30 minutes after

the departure of the OMV. Normal operations

should be resumed shortly thereafter. The total

outage time due to servicing is approximately 12
hours.

After the OMV has docked to the OTV, the

OTV performs an east-west maneuver to move
from 84 ° W to the satellite stationed at 144 ° W.

The transit time to the next satellite is approx-

imately two days using a negative delta velocity
of 14.6 m/s. Once the OTV arrives on station,

the servicing operations described above are re-

peated.

After the servicing operations have been com-

pleted and the OMV has docked to the OTV, the

OTV returns the OMV, servicer and spent ORUs

to low earth orbit. The operations for de-orbit

and return to the Space Station are identical to
those described in Subsection V-4.1. The mission

cost data is shown in Table V-23. A timeline for

the servicing mission is shown in Table V-26.

4.2.4 Disposal of Spent ORUs

There is an issue about the disposal of the spent

Orbital Replacement Units (ORUs) after servic-

ing operations are complete. There are three pos-

sible solutions to this problem:

i. Return the modules to earth for engineering

analysis and/or refurbishment. There is a
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ii.

significantfuel costto doso, andthe mod-
ulesareexpectedto havelittle salvagevalue.

Disposeof themodulesduringtheaerobrak-
ing maneuveror in low earth orbit imme-
diately following aerobraking. The mod-
uleswould enter into the atmosphereand
be destroyed. This requiresa redesignof
theplannedORUrackservicerto allowthe
modulesto beejectedwithoutdamagingthe
servicer.Also,caremustbe takento ensure
that the modulesarecompletelyconsumed
andthat debrisdoesnot fall to earth.

ii. Createanorbital junk yard in GEOand/or
LEO.

Thereis no clear directionon the disposalof
spacedebris,but actionshouldbe takenin this
area. It is beyondthe scopeof this study to
performa detailedanalysisof this problem,but
future studiesshouldincludethe abovealterna-
tives.

4.3 Scenario for Open Design

The open architecture configuration is similar to

the closed architecture configuration in that they

are both designed for subsystem level servicing.

The only difference between the two configura-

tions is that the open design provides on-orbit

storage of degraded/failed ORUs. The replace-

ment masses of the various subsystems and the
overall mission mass breakdown are shown in Ta-

bles V-24 and V-27 respectively.

The servicing scenario for the open design is

identical to the closed design scenario described

in Subsection V-4.2 except for a minor change

in the module exchange procedure. Instead of

removing the ORUs from the satellite and load-

ing them into the ORU rack on the OMV, the

modules are relocated to storage locations on the

satellite. The housekeeping modules are placed

in passive storage locations on the earth facing

panels of the :t=x ends of the truss. The replace-

ment payload modules are placed in active loca-

tions on the south facing panels of the satellite.

The replacement modules could operate in par-

allel with the existing modules, providing addi-

tional traffic capacity or redundancy. The mod-

Mission Equipment Mass (kg)
OTV

OMV (small version)
lOSS

Fueling Kit
Total

MMH fuel

NTO fuel

Module mass

Total equip. + fuel

3,734

1,675
286

230

5,925
259

457

803

7,444

Table V-24: Servicing Mass (Open Design)

Capital Expenditure Item

Replacement components

Transportation

Launch support

Mission operations

OMV/OTV use fees
Space Station fees
Insurance

Total

Table V-25: Servicing Cost (Open Design)
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Time

. _ (hr) Mission Event

To

+2.2

+4.0

+6.8

+12.8

+16.9

+41.3

+42.8

+44.8

+45.8

+53.6

+57.2

+58.2

+64.2

+112.2

+114.2

+115.2

+116.2

+124.0

+131.8

+132.8

+139.1

+141.1

+142.1

OMV moves OTV out of Space Station Control zone.

First perigee burn by OTV.

Second perigee burn by OTV.

Third perigee burn by OTV.

Fourth perigee burn by OTV.

Apogee burn by OTV.

Trim burn and rendezvous with 84 ° satellite by OTV.

OMV separates from OTV.
OMV rendezvous and docks with satellite.

Module replacement and refueling operations for first satellite.

System level checkout of first satellite.
OMV demates from satellite.

OMV docks with OTV.

OTV performs east-west maneuver.
OTV rendezvous with satellite at 144 ° W.

OMV separates from OTV.
OMV rendezvous and docks to satellite.

Module replacement and refueling operations for second satellite.

System level checkout of second satellite.
OMV demates from satellite.

OTV performs de-orbit & aerobraking maneuvers.

OTV performs orbit raising maneuvers to 240 nm.

OMV transfers OTV to Space Station docking area.

MRMS grapples OTV and docks to Station.

Table V-26: Mission Timeline - Servicing Mission for Closed Architecture Satellite

Replacement

Subsystem Servicing Capacity Mass (kg)

Attitude Control

Propulsion
Electrical Power

TT&C

Control Electronics

Thermal Control

Replace all subsystem components.

Refueling.

Replace all subsystem components except

solar arrays and shunt regulators.

Replace all subsystem components.

Replace all subsystem components.

Replace blankets, heaters and radiators

associated with subsystem modules.

Structure

Payload

Total

Replace module structure.

Replace all subsystem components

except antennas and feeds.

72

572

107

10

51

26

140

405

1,383

Table V-27: Mass Replaced During Servicing of Open Architecture Satellite

V - 46



ule relocation/replacement operation is shown in

Figure V-24.

In addition to potentially providing additional

transponder revenue, storing the modules on the

and the IRR. The following information is used

to produce the cash flow table:

i. Annual capital expenditures

satellite eliminates the need for returning the ii. Annual transponder revenues
ORUs to LEO or earth, which translates into a

reduction in transportation costs.

The servicing mission cost data is shown in

Table V-25, and the servicing mission timeline is

shown in Table V-28. The total satellite outage

time is approximately 12.5 hours.

5 Economic Analysis

The baseline, refuelable, and modular configu-

rations are analyzed to determine their relative

economic performance. In order to accurately ac-

cess the performance of the serviceable designs,
baseline cases are run for ELV and OTV launch

scenarios. For the baseline case, it is assumed

that the satellite is launched in year 1 and a re-

placement launched in year 12, giving a 24 year

mission life. The serviceable designs are launched

in year 1 and serviced at the beginning of year 12.

The refuelable design is serviced at the beginning

of year 9.

5.1 Methodology

The the economic performance for the base-

line, refuelable, and serviceable configurations

are evaluated by comparing the Internal Rate of

Return (IRR) and the Net Present Value (NPV).
The IRR is a measure of return on investment

based on cash flow. This type of comparison

effectively decouples the analysis from external

factors and allows comparison of a variety of in-

vestments with different capital expenditures and

incomes. The NPV present value is a measure of

the cash flow of a particular investment at a given
IRR.

The IRR and NPV is calculated for the 12, 14,

and 24 year program lifetimes based on the cap-

ital expenditures for the initial satellite and the

replacement mission and the transponder rev-

enues. Cash flows are spread over the lifetime

of the program, and the standard formula used

to compute NPV at the specified discount rate

iii. Tax rate

iv. Discount rate for NPV calculation

The Cost inputs for the initial launch and

replacement satellite are shown Tables V-29

and V-30, respectively. The transponder rev-
enues are based on C-band and Ku-band tran-

sponder prices of $680,000 and $960,000 per year

respectively (36 MHz transponders). The total

revenue is estimated from transponder reliability
data. The satellite revenue as a function of time

is constant for the first four years and then begins

to fall off as the number of failed transponders

exceeds the number redundant transponders.

The revenue curves for the refuelable, closed

configuration, and open configurations are shown

in Figures V-26, V-27, and V-28 respectively.

For each case, revenue is compared with that

of the baseline satellite. For modeling purposes,

a 38.6% tax rate and an annual operating cost

equal to 10% of the transponder revenue are as-
sumed. The NPV is based on a discount rate of

18%, which corresponds to the rate of return of
the baseline ELV launch case.

5.2 Results

The model was run using the inputs described in

Subsection 5.1 for the following cases:

i. Baseline satellite, ELV launch, 12 year life.

ii. Baseline satellite, OTV launch, 12 year life.

iii. Refuelable satellite, ELV launch, and a 12

year lifetime.

iv. Refuelable satellite, OTV launch, and a 12

year lifetime.

v. Refuelable satellite, ELV launch, and a 14

year lifetime.

vi. Refuelable satellite, OTV launch, and a 14

year lifetime.
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Time
(hr) MissionEvent

To

+2.2

+4.0

+6.8

+12.8

+16.9

+41.3

+42.8

+44.8

+45.8

+54.1

+57.7

+58.7

+64.7

+112.7

+114.7

+115.7

+116.7

+125.0

+132.8

+133.8

+140.1

+142.1

+143.1

OMV moves OTV out of Space Station Control zone.

First perigee burn by OTV.

Second perigee burn by OTV.

Third perigee burn by OTV.

Fourth perigee burn by OTV.

Apogee burn by OTV.

Trim burn and rendezvous with 84 ° satellite by OTV.

OMV separates from OTV.
OMV rendezvous and docks with satellite.

Module replacement and refueling operations for first satellite.

System level checkout of first satellite.
OMV demates from satellite.

OMV docks with OTV.

OTV performs east-west maneuver.
OTV rendezvous with satellite at 144 ° W.

OMV separates from OTV.
OMV rendezvous and docks to satellite.

Module replacement and refueling operations for second satellite.

System level checkout of second satellite.
OMV demates from satellite.

OTV performs de-orbit & aerobraking maneuvers.

OTV performs orbit raising maneuvers to 240 nm.

OMV transfers OTV to Space Station docking area.

MRMS grapples OTV and docks to Station.

Table V-28: Mission Timeline - Servicing Mission for Open Architecture Satellite

Capital Expenditure Item

"Satellit'e'

Launch

OMV/OTV Charges

Space Station Support

Launch Support

Mission Operations
Insurance

Total

Baseline

ELV OTV

64.2 64.2

40.0 34.2

- 6.1

- 1.6

1.6 1.6

2.6 2.6

26.0 13.5

134.4 123.8

Refuelable

ELV OTV

68.5 68.5

40.0 34.1

- 6.1

- 1.6

1.6 1.6

2.6 2.6

27.0 14.1

139.7 128.6

Closed

Design

64.8

34.5

6.1

3.0

1.6

2.6

13.7

126.3

Open

Design

69.4

34.7

6.1

4.0

1.8

3.6

14.4

134.0

Table V-29: Capital Expenditures for Initial Satellite ($ M)
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FigureV-24: ModuleRelocation/ReplacementOperation

CapitalExpenditureItem ] Baseline ] RefuelableELV] OTV Design

Replacement Cost 64.2 64.2 1.4

Launch Cost 40.0 34.2 5.8

OMV/OTV Costs - 6.1 -

Space Station Support - 1.6 1.0

Launch Support 1.6 1.6 -

Mission Operations 2.6 2.6 1.0
Insurance 26.0 13.5 3.5

Total 134.4 123.8

Closed

Architecture

36.1

24.6

6.1

3.3

3.2

4.8

12.1

Open
Architecture

36.1

23.4

6.1

3.3

3.2

4.8

12.0

12.7 90.2 89.0

Table V-30: Capital Expenditures for Replacement or Servicing Mission ($ M)
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Figure V-25: Revenue - Refuelable Design
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Figure V-27: Revenue - Open Design

vii. Baseline satellite, ELV launch, and a 24 year
mission.

viii. Baseline satellite, OTV launch, and a 24

year mission•

ix. Open architecture serviceable satellite and a

24 year mission.

x. Closed architecture serviceable satellite and

a 24 year mission.

The IRR and NPV for each of the above cases

are shown in Tables V-31 and V-32, respectively.

The results indicate that servicing improves the

rate of return by 3.5% to 8.3% and the NPV value

by $19.2 to $24.4 million. The performances of
the serviceable scenarios relative to the baseline

are summarized Tables V-33 and V-34.

Tables V-33 and V-34 indicate that the refue-

lable scenarios (Cases iii - vi) realize the largest

improvement in economic performance, followed

by the Closed (Case ix) and Open architecture

(Case x) respectively• These results indicate that

the economic performance is strongly correlated

with the initial capital expenditures and the pay-

load mass fraction. Of these two factors, the lat-

ter seems to dominate. The relation of these pa-

rameters to economic performance is shown in
Table V-35.

In order to isolate the effect of the payload

mass fraction on the economic performance two
additional cases were run:

xl. Closed architecture configuration with 30

Ku-band (and 24 C-band) transponders for
the entire mission.

xii. Open architecture configuration with 30 Ku-

band (and 24 C-band) transponders for the
entire mission.

The results of these cases are compared to cases
ix and x in Table V-36.

Table V-36 clearly shows the influence of the

payload size relative to the bus has on the eco-

nomic performance. These results reiterate the

importance of efficiently utilizing the available

mass and power in order to achieve the maxi-

mum economic return. This is precisely the rea-
son that the refuelable scenarios are the most effi-

cient. The refuelable satellite converts fuel mass

V - 50



SatelliteDesign
Baseline(ELV Launch)
Baseline(OTV Launch)

Refuelable (ELV Launch)

Refuelable (OTV Launch)

Open Architecture
Closed Architecture

Mission Lifetime

12 Year 14 Year

18.0

21.5

24.7 25.7

29.6 29.8

24 Year

14.5

17.8

21.3

23.8

Table V-31: Internal Rate of Return (%) for Various Configurations

Satellite Design

Baseline (ELV Launch)

Baseline (OTV Launch)

Refuelable (ELV Launch)

Refuelable (OTV Launch)

Open Architecture
Closed Architecture

Mission Lifetime

12Year 14Year

-0.1

9.0

19.1

29.3

24 Year

23.8

33.4

-11.8

-4.7

10.7

16.7

Table V-32: Net Present Value ($ M) for the Various Configurations (18% Discount Rate)

Satellite Design

Refuelable (ELV Launch)

Refuelable (OTV Launch)
Open Architecture
Closed Architecture

Mission Lifetime12 Year 14 Year 24 Year

6.7

8.1

7.7

8.3

- 3.5

- 6.0

Table V-33: Increase in Rate of Return (%) Compared to Baseline Satellite

Mission LifetimeSatellite Design 12 Year 14 Year 24 Year

Refuelable (ELV Launch) 19.2 23.9 -

Refuelable (OTV Launch) 20.3 24.4 -

Open Architecture - - 21.8
Closed Architecture - - 21.4

Table V-34: Increase in Net Present Value ($M) Compared to Baseline
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Initial Capital Payload
Expenditures Fraction

SatelliteScenario ($M) (%)
Baseline(OTV Launch) 123.8 30.0
Refuelable(OTV Launch) 128.6 32.8
ClosedArchitecture 126.3 27.9
OpenArchitecture 134.0 25.5

IRK
(%)
21.5

29.6

23.8

21.3

Table V-35: Effect of Capital Expenditures and Payload Mass Fraction on Economic Performance

Number of Transponders

24C+ 34Ku 24C+ 30Ku

Satellite Design IRR (%) NPV ($M) IRR (%) NPV ($M)
,r

Open Architecture
Closed Architecture

21.3 10.7

23.8 16.7

17.8 -0.7

19.7 5.3

Table V-36: Impact of Number of Transponders on Economic Performance

which has no direct earning capability to pay-

load mass which results in higher transponder

revenues without an increase in the beginning of

life (BOL) mass. The serviceable scenarios how-

ever suffer a significant increase in dry mass due

to the scars required for servicing. The result is

an increase in the satellite design, manufacturing

and transportation costs without a correspond-

ing increase in revenue.

Serviceable satellites have the potential for re-

duced insurance and transportation costs. While

these are significant portions of the overall pro-

gram cost, they do not tell the whole story. Care

must be taken during the design stage to keep
the cost of the satellite down and to maximize

the payload fraction to ensure that the satellite

is operating at maximum efficiency. Serviceable

designs are similar to the current nonserviceable

designs in that both must utilize the available

mass and power to maximize their revenues.

6 Requirements on Station

This subsection suggests the services and op-
erations that must be supported by the Space

Station infrastructure in order to implement on-

orbit assembly and servicing of commercial satel-
lites.

6.1 Transportation Systems

In order to serve as a transportation node and or-

biting service center, the Space Station requires

three different transportation systems:

i. An earth to Space Station system.

ii. A recoverable orbital tug for short range op-

erations with large payloads.

iii. A recoverable long range system for large

payloads.

These systems are discussed in detail in the fol-

lowing paragraphs.

6.1.1 Earth to Space Station

Economical transportation to the Space Sta-

tion is essential to commercial users. Develop-

ment of intermediate to heavy lift launch vehicles

for transportation directly to the Space Station
would reduce the cost of the initial transporta-

tion leg.
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Strongconsiderationshouldbegivento devel-
opmentof automateddockingsystemsfor future
ExpendableLaunch Vehicles (ELVs). This would

reduce the burden on the Space Station crew by

eliminating the role of the orbital maneuvering
vehicle in ELV launches.

6.1.2 Orbital Maneuvering Vehicle

At least one Orbital Maneuvering Vehicle (OMV)

is required to support remote servicing opera-

tions. The OMV is used for all phases of the

servicing mission including:

Transport of equipment from ELV or Shuttle

aft cargo carrier in a parking orbit to the
Station.

• Transport of payloads or equipment within

the Space Station Control Zone.

• Transport and support of a remote servicing
system.

• Retrieval of remote objects.

The dependence of the Space Station on the

OMV warrants consideration of adding a second

and possibly a third OMV to the inventory. This

would allow an OMV to operate in a remote lo-

cation for an extended period of time without ad-

versely affecting Space Station operations. This

suggests an alternate servicing scenario:

The OMV and remote servicer transported
to GEO via the Orbital Transfer Vehicle

(OTV).

ii. The OTV returns servicing debris to the
Space Station while the OMV remains in

GEO, either to perform additional opera-
tions or in a "hold" mode.

111. Additional spares are transported to GEO

by the OTV or an ELV,

iv. The OMV and servicing debris are returned

to the Space Station via the OTV.

This scenario utilizes the contingency hold ca-

pability of the OMV in order to to remain in a re-

mote orbit for up to nine months. This capability

would reduce the servicing mission transporta-

tion costs by eliminating the need to transport

the OMV on each servicing mission. This allows

the cost of transporting the OMV to GEO to be

spread among more users which in turn lowers

the cost per user.

6.1.3 Orbital Transfer Vehicle

The proposed OTV configurations have the ca-

pability to transport large payloads from the

Space Station to GEO at a much lower cost per

kilogram than current systems. The retrievable

nature of these designs increases the reliability

of the system which may result in lower insur-

ance rates due to the reduced risk. The ability

to transport large payloads to GEO and return

them to the Space Station is essential to the ser-

vicing scenarios presented in this report. In ad-

dition, the capability of the low thrust mode of

operation is essential to the launch scenarios.

6.2 Space Station Facilities

In order to support commercial activities, the

Space Station must provide storage facilities as

well as the basic tools and services required to

support assembly, maintenance, and servicing of
commercial payloads. These facilities and ser-
vices are discussed below.

6.2.1 Robotics

The Space Station crew requires support from

robots operating both inside and outside the

pressurized modules. These robots can relieve

the crew from performing tasks ranging from

the tedious and mundane to those that are po-

tentially dangerous to humans. Potential tasks

which may be automated include:

• Logistics operations.

• Satellite assembly and deployment.

• Remote inspection.

• Refueling.

• Handling of hazardous materials.

• OMV/OTV processing.
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• SpaceStationmaintenance.

• Remoteservicing.

The range of activities at the Space Station

and the workload suggest that more than one

robotic system is required. The proposed Flight

Telerobotic Servicer (FTS) and iVA robotic sys-

tems clearly have a place in the daily Space Sta-

tion operations. Additional robotic systems are

required for remote servicing and operation of

the Space Station fuel depot.

The limitations of man-in-the-loop control sug-

gest that the FTS may not be the best system for

remote satellite servicing and that a simpler and

lighter automated servicer such as the Integrated

Orbital Servicing System (IOSS) should be devel-

oped. Handling of cryogenic and hypergolic fuels

used in spacecraft propulsion systems is a poten-

tially hazardous operation best performed by a

robot. Since the fueling platforms will be located

away from the Space Station, it is recommended

that the fueling platforms have dedicated robotic

systems.

6.2.2 Customer Servicing Center

The customer servicing center (CSC) should pro-

vide accommodations for storage, assembly, and

servicing of commercial payloads. In order to

support these activities the CSC should provide

the following services:

• Internal storage and assembly area.

• Thermal control.

Interfaces to Space Station communica-

tions, power and Data Management Systems

(DMS).

Video and lighting.

Access for FTS, Mobile Remote Manipula-

tor System (MRMS) and astronauts.

Miscellaneous racks, fixtures and pallets.

• Standard EVA tools.

• Standard FTS tools and end effectors.

6.2.3 Fueling Depot

Provisions should be made for on-orbit storage

of cryogenic and hypergolic fuels and nitrogen for

the OMV, OTV and free flying spacecraft. These

facilities should have the following provisions:

• Docking interfaces.

• Fluid transfer equipment.

• Fuel recovery/scavenging systems.

• Video and lighting.

• Robotics.

• Leak detection.

• Emergency fuel purge and contamination

control systems.

6.2.4 Other Services and Equipment

Additional equipment required to support the

proposed assembly and servicing scenario in-
cludes:

Berthing Facilities. OMV/OTV berthing fa-

cilities are required for storage and servic-

ing of these systems. These facilities should

have the capability for reprocessing and re-
furbishment.

MRMS is required for transportation of various

payloads within the Space Station.

EVA Services by astronauts are required for

routine and contingency operations in sup-

port of assembly and servicing activities.

Spacecraft Test Facilities are required for

post assembly and prelaunch checkout.

RF Test Facilities are required to verify the

performance of satellite antenna systems.

Docking and Berthing Facilities are

required for the OMV, OTV, Shuttle and

possibly ELVs.
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7 NASA Course of Action

The task is to recommend a course of action to be

undertaken by NASA that promotes the develop-
ment and use of modular communications satel-

lites. The discussion is divided into two parts:

1. NASA fee structure

2. Actions to promote modular satellites

7.1 NASA Fee Structure

Some thoughts and ideas are presented on a

NASA fee structure for space operations involved

in on-orbit assembly and servicing of communica-

tions satellites. The discussion is organized into
four subsections:

1. What needs to be priced?

2. What is the purpose of the fee structure?

3. Discussion of the various issues associated

with several pricing or fee structures.

4. Fee structure recommendations.

7.1.1 What Needs to be Priced?

There are a number of ways of looking at the

question of what needs to be priced. The obvi-

ous answer is the service. But, what does that

mean? Does it mean that NASA should have

a set, fixed price for a service call? Or, does it

mean that each component of the servicing is bro-
ken down (labor hours, IVA, EVA, RMS, time in

the facility, parts, power, fluids, data, etc.) and

charged for on some kind of hourly or quantity

basis? Or, is there a combination of the two, that

is a fixed charge for placing the satellite in the

facility and taking it back out (no matter how

much is required in, for example, RMS time and

crew effort) and then a charge for "parts and la-

bor" while the work is being performed? Clearly,

these questions raise many operational as well

as pricing issues. Some of these issues are dis-
cussed in detail in the sections which follow. The

range of services to be provided to the commu-
nications satellite user can be broken down into

three broad areas.

1. Non-facility services:

- Launch to the Station

- OTV from Station to GEO

- Recovery at GEO

- Return to Station

2. General usage

w

Positioning in the facility

Time simply present in the facility

Health maintenance in the facility (the

minimum services needed to simply
maintain the satellite in thermal con-

trol, data links, etc.)

Removal from the facility

3. Servicing

- Assembly

- Fueling or refueling

- Repair

- Retrofit/upgrading

Each of these services involves a large number

of subactivities that can also be priced. The sub-

activities fit into five general categories:

Labor (crew time for IVA or EVA, planning,

scheduling and preparing for the activity,

operating the RMS, etc.)

• Consumables (power, fuel, etc.)

• Telemetry or data transmission

• Parts

• Equipment usage (RMS, EVA suit, OTV,

etc.)

Each of these sub-activities can be priced ei-

ther in terms of time, volume consumed, or by

discrete item. This would allow the facility man-

ager to set up a price list for all services. For

example, crew time could be charged for at the

rate of say $20,000 per hour, use of the EVA suit

at say $100,000 per hour, power at say $2,500

per kilowatt hour, fuel at say $4,000 per liter,

and a new battery at $10,000 (includes cost of
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transportation).Therefore,if a satellitewereto
berefueledandhaveanewbattery installed,one
couldestimatethe amountof eachof theseand
other activities would be requiredand develop
a price. This is all very straight forward- the
hardpart is in determininghowmuchshouldbe
charged.This areais discussedin greaterdetail
in the nextsubsection.Beforeweleavethis issue,
however,it shouldbenotedthat eachof thethree
broadareas has certain characteristics that may

influence our options when determining pricing
structure.

7.1.1.1 Non-Facility Services. These ser-

vices involve flight issues and, it can be argued,

the existing way of buying launch services may

have already established precedents for the fee

structure. It may also have provided some idea as

to price range. As was established in the earlier

study, the communications satellite industry has

to see a tangible benefit before they will change

their way of operating and use the Space Sta-

tion. As a result, the fixed price method with

some added charges for optional services appears

to be the most likely structure for this area.

7.1.1.2 General Usage. General usage ap-

pears to be a rather predictable area. Once some

operational experience is gained, it should be

rather easy to know what is required to position

satellites in the facility, hook up health mainte-

nance capabilities, and remove it from the facil-

ity. These charges again would lend themselves

to a fixed price scheme. The issue of time actu-

ally in the facility, like the room charge at a hos-

pital, can be determined and charged at a fixed

hourly or daily rate. The key to this entire area is

predictability. There should be no unknowns so

the scheme for pricing should be very predictable.

Of course, some customers may desire some spe-

clal services as part of the genera] usage category

and these could be accomplished for either flat

fees or increased hourly rates depending on the
service desired.

7.1.1.3 Servicing. Servicing is the least pre-
dictable area. While estimates can be made, the

exact number of man hours needed or other items

consumed is difficult to calculate with precision

in advance. This area, like a standard automobile

repair facility, lends itself to a price list type of
structure. In this structure rates are established

for labor and consumables and parts are charged

based on a published catalog or price list.

The problem faced by this method for the

Space Station is that there is no precedent for

this type of work and it is difficult to determine

what the initial customer should be charged.

This is a problem in that once labor rates and

catalog prices are published, these are rather dif-

ficult to change in an upward direction except

in small increments. As a result, significant care

should be taken in the initial price setting task.

The natural solution to this problem is to be

conservative and set the prices high so that they

can be adjusted downward later if experience

shows the work can be done less expensively.

Unfortunately, this strategy may also succeed in

pricing the services so high that customers choose

not to use the facility.

7.1.2 Purpose of the Fee Structure

The results of the pricing work performed by

both the Coopers & Lybrand and 3PL/Cal Tech

groups (for NASA Headquarters, Space Station

Utilization Directorate,) suggests the following

points:

• Pricing policy should encourage early use.

• Policy should be flexible and adaptable.

- Predictability is important (rules of the

game).

-Predictability does not require un-

changing prices.

• All subsidies should be explicit.

• All users should be subject to prices.

• Mechanisms must exist to allow customer

self-selection of priorities.

The one issue that is not part of that list is

cost recovery. It was felt that the Space Sta-
tion should be viewed as a national asset and,

as such, the importance of recovering costs was
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secondaryto the overall benefitsthat could be

derived. Also, it was felt that the Space Shuttle

was over sold on its ability to pay for itself and

that that error should not be made again. There-

fore, whatever revenue was derived from charging

for the services was a benefit but cost recovery

should not be considered the goal of the pricing
policy.

Clearly, such a philosophy substantially

changes the purpose of a fee structure or pricing
policy. If it is not required that costs be recov-

ered, at least in the short run, then the purposes

of the pricing policy becomes to influence cus-

tomer behavior and allocate resources. That is,

we make expensive those things that are scarce

(i.e. crew time) and relatively inexpensive those

things that are more plentiful (i.e. outside stor-
age space). In this way we try to influence cus-

tomer activity.

For example, if EVA activity is made more ex-

pensive than robotic manipulation, you encour-

age the customer to design his spacecraft in such

a way that he facilitates and promotes robotics

while discouraging EVA. If one wishes to strongly

emphasize this point one could even provide a

subsidy or discount for satellites that promote

the use of robotics. An example would be that

all satellites manufactured with the capability of

robotic changing of major components would re-
ceive a 15% discount on all services conducted

aboard the Space Station.

Pricing policy can also be used to determine

the priority of a payload for servicing. A number

of mechanisms can be used. If supply exceeds

demand, then there is little problem. However,

if demand exceeds supply (either overall or at

key points in time) then either an auction mech-

anism or the ability to purchase a higher priority
slot serve as mechanisms for self selection. For

example, if a number of satellites are scheduled

for routine maintenance and have paid for their
time in the schedule and another satellite has a

failure, then a mechanism might exist where by

that satellite owner could purchase a priority or

emergency place in line and bump others out.

The system might work something like the cur-

rent pricing of transponders where we have pre-

emptable and non-preemptable classes.

Whatever the pricing policy selected, careful

consideration must be given to the long term im-

pacts of the system and its ability to accomplish

two seemingly contradictory objectives. These

are, first, to provide consistent predictable rules
of the game so that customers can determine in

advance their costs and make selections as to the

levels of priority they wish and, second, to al-

low prices to change and raise over time to be-

come a mechanism to effectively allocate resource

and eventually begin to recover operational costs.

The report prepared by Coopers & Lybrand sug-

gests a method for accomplishing this.

One final issue with respect to the pricing pol-

icy needs to be addressed. The effort to price

services low to encourage early usage works well

for such areas as laboratory usage for micrograv-

ity materials science which is recognized as an

emerging area of space activity. The communi-

cations satellite area, however, is considered a

mature, profitable business area able to pay its

own way. As such there may be considerable re-

sistance to low prices and not recovering large
portions of operating cost. As was discussed in

our earlier work on this subject, the price for

the full up package (launch to Station, work at

Station, transport to GEO or other orbit) must
either be lower cost or clearly more beneficial to

the satellite owner or they will bypass the Station

and go directly to GEO as they do now.

In short, it is our belief, that the fee structure

should promote usage as a primary goal. As a

result, fees, on whatever basis they are charged,

should be kept low. In addition, mechanisms

should be developed, such as those suggested in

the Coopers & Lybrand report, that allow prices
to raise over time as demand increases.

However, there are serious consequences to this

policy especially with respect to the communica-

tions satellite area. With the government pro-

viding what are, in effect, massive subsidies to

get the activity started and thereby encourage

builders to shift their methods of production to

accommodate use of the Space Station, there will

be several parties hurt and, once the transition

is complete, satellite users will, in effect, be cap-

tured by the Space Station policy.
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7.1.3 Fee Structure Issues

The preceding sections have discussed what
needs to be priced and what purposes of the pric-

ing or fee structure might serve. We now turn

to some pragmatic issues which build on those

points. The first comment is that whatever sys-

tem is selected it must be consistently applied

over a significant period of time to allow the cus-

tomer to plan. It is also desirable that the system

be relatively easy to understand.

Unfortunately, simplicity is a double edged

sword. Simple systems are easy for the customer

to understand but, in general, they lack the so-

phistication to adopt to the changing economic
realities over time as more is learned about how

this activity is actually conducted. As a result,

systems which appeared simple at the outset re-

quire total revision at some point and this radical

change in the rules of the game, if it is possible at

all, upsets customers greatly (if it is not possible

then the provider continues to suffer economic

harm from continued operations).

There are many systems that could be adopted

as a fee structure for servicing communications

satellites on the Space Station. Let us assume

that for all approaches the transportation to

Space Station is carried out using either Shut-

tle or ELV and is priced separately. We start at

the point where the satellite is sitting outside the

Station waiting for the service provider to take

charge of it. Three pricing options are discussed:

1. Fixed Price Fees

2. Sliding Scales for Prices

3. Combination of Fixed and Sliding Scale

7.1.3.1 Fixed Price Fees. The first option

is a fixed price option similar to that used for

satellites on the Shuttle. That is a single (or

perhaps several based on size or type) fixed price

for a complete service in using the Space Station

facility. It could also be done just like the Shuttle

and a price determined for the entire capacity of

the service facility and customers charged for the

percentage of that space they occupy.

The advantage of this approach is simplic-

ity. All activities are bundled and the customer

knows what must be paid. Of course, in order

to provide predictability, prices must be fixed for

some period of time such as four to five years

or more (they can vary with outside parame-

ters such as inflation but not with respect to

base charges). While this type of system pos-

sesses some advantage to the customer, assuming

the initial price selected is not considered pro-

hibitively high, there are serious disadvantages

for the operator.

Since there is no operational experience on

which to base the initial pricing and that price

must be fixed for a number of years, the opera-

tor looses all flexibility in the system. Whatever

price is charged initially, right or wrong, they are

stuck with that price and the probability of the

price being wrong is very high. Therefore the se-

lection of this pricing policy implies a decision on

the operator's part to accept a subsidization role

(perhaps in an introductory offer initially and

less so later) for a significant period of time. This

means that no matter what happens to costs, the

price stays the same.

The other disadvantage is that it eliminates

the ability of the operator to influence the cus-

tomers behavior. With a fixed price the customer
is not aware or concerned about the cost of rel-

ative options for the use of different methods of

servicing (EVA versus robotics). The customer is

paying a fixed price for the services and is neutral

as to how the job gets done. Again the operator

can either do well or do poorly (in an economic

sense) based on how efficiently they can perform

the work. However, the tendency is to force fixed

prices down over time and the opportunities for

the operator to do well economically are not as

great as they are to do poorly.

7.1.3.2 Sliding Scale Fees. The second

pricing method is in a sense the opposite of fixed

costs. That is the development of prices for each

particular activity or sliding scales for prices so

that the customer is charged for each discrete

activity and/or material that are used. The ad-

vantages of this system to the operator are that

they are assured that there is little difference be-
tween the costs of providing the service and what

they are able to charge, they can influence the
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behavior of the customer by making certain al-

ternatives more or less expensive, and they have

greater flexibility in changing prices. This last

issue is because with so many items are priced,

changes in a few are relatively minor events to

the customer and may go unnoticed and can usu-

ally be justified in terms of increased costs to the

operator.

Of course, the disadvantage to the customer

is the greatly increased complexity of the system

and the resultant loss of predictability for plan-

ning purposes. Some of this predictability is reat-

tained, however, if price lists are public and oper-

ational experience has given the customer and/or

the operator the ability to predict with some ac-

curacy what a particular activity is likely to cost.

A major problem, however, is faced by the initial

customers who have no operational experience on
which to base their forecasts of cost.

7.1.3.3 Combined Fixed and Sliding
Scale Fees. The obvious other alternative is

some combination of these two methods. As

was suggested in an earlier section, some activ-

ities lend themselves to fixed prices because of

their relatively routine and predictable nature

while others lend themselves to price lists. This

approach has a number of obvious advantages.

However, in dealing with some issues a few sug-

gestions may be in order. A lower introductory

fixed price for the fixed price services might be

given to encourage early usage. For the price

list services, consideration might be given to pay-

ing by the price lists with a total, not to exceed,

price determined in advance until some opera-

tional data is developed. While this does not

eliminate all risks to the customer, it puts a cap

on the risk. Of course, both of these suggestions

imply the government's willingness to take the

losses for both the introductory stimulation and

incorrect estimates of price list costs. However,

without such a willingness it is difficult to moti-
vate initial users.

7.1.4 Fee Structure Recommendations

The question of fee structure and pricing must be

dealt with in the context of the larger Space Sta-

tion pricing policy question which is being studies

at NASA Headquarters.

We do not suggest actual dollar amounts be-

cause it is far too early for that level of speci-

ficity, but have give recommended methodology.

The combined fixed and sliding scale fees as dis-

cussed in paragraph V-7.1.3.3 is recommended.

We believe that for the customer, knowing

the actual dollar price is far less important than

knowing what the "rules of the game" are so that
they can calculate what their fees will be once ac-
tual amounts are known.

7.2 Promotion of Modular Satellites

This subsection provides some thoughts and is-

sues concerning what actions NASA might take
to promote the use of modular satellites and as-

sembly, test and refurbishment at the Space Sta-
tion.

7.2.1 Current Situation

The domestic commercial communications satel-

lite manufacturers (Ford Aerospace, Hughes and

GE-RCA Astro) have invested substantial capi-

tal in plant, equipment, manufacturing to manu-

facture satellites using current technology. They

each also operate relatively profitable businesses

in the production of both commercial and gov-

ernment satellites. As was made quite clear in

the research performed for the initial phase of

our work for NASA Lewis Research Center, they

are not currently motivated to change from this

successful pattern.

When the initial financial models were built for

the servicing and repair of communications satel-

lites, it became a basic assumption of the exercise

that, unless NASA could demonstrate that stop-

ping at the Station was either financially benefi-

cial or significantly enhanced the capability of the

system, the manufacturer/owner/operator would

by-pass the Station and do business as usual.

This basic assumption remains quite valid in this

portion of the study.

In fact, in order for the manufacturer to be

motivated to change behavior, it must be demon-

strated that stopping at the Station is so bene-
ficial it will show a return on investment ade-
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quateto offsetthe entirecost of requiredR&D
for and the actual changesin productiontech-
niquesneededto usethe Stationwithin a rel-
atively short period of time (e.g. 3-5 years).
As currently planned,no onehasindicatedthat
the costsof stoppingat the Stationwill besuffi-
cientlybeneficialto provideadequateoffset.

Although the insurancecommunitydoesfeel
insurancerate benefitswill be derivedfrom as-
semblyand repair at the SpaceStation, it will
comeonly after the systemhasbeenadequately
demonstrated.The insuranceindustry person-
nel interviewedalsoindicatedthat they did not
feelthe insuranceindustrywouldleadanymove-
menttowarduseoftheSpaceStation. It ishighly
unlikelythey wouldrequiresuchuseasa condi-
tion for coverage(thougheventuallypreferential
ratesmay begiven). Hereagain,evenreduced
insurancerateswill not provideadequatefinan-
cial rewardsto offsetthe developmentandother
costsassociatedwith the change.

7.2.2 Available Options

Given this situation, the options available to

NASA to stimulate use of a servicing facility are
limited:

1. Waiting in hopes that demand for such a

facility will eventually develop;

2. Building the facility (including an OTV) and

providing owner/operators use of the facility
at little or no cost in hopes that it will, in

fact, be used;

3. Requiring a modular design (like Solar Max

or a more advanced version) and assembly
and test at the Station for selected NASA

scientific satellites;

4. Initiating a major government wide (NASA,

NOAA, DOD) effort to require most if not

all government procured satellites to be
modular and use the Space Station for as-

sembly, testing and repair.

7.2.3 Pros and Cons of the Options

The first option, as was made clear in the dis-

cussion of the current situation above, is very

unlikely to succeed. All of the economic incen-

tives are wrong for demand for such a facility to

develop on its own.

The second option is also not very desirable. It

requires a major up front investment by NASA

that may not provide adequate incentive for man-

ufacturers to change their methods of production

and operations even if the services are provided

for free, The cost of change from the manufac-

turer's point of view is quite high and must be

successfully amortized over a number of sales to
be offset and show an economic benefit. While a

zero cost for use of the Station facility and OTV

may provide adequate return if sufficient sales

can be made, unless all manufacturers change,

the one changing may perceive a competitive dis-

advantage during the change. Also, a real risk

exists that NASA policy might change and begin

charging for the facility/OTV may provide ade-

quate return if sufficient sales can be made, un-

less all manufacturers change, the one changing

may perceive a competitive disadvantage during

the change. Also, a real risk exists that NASA

policy might change and begin charging for the

facility/OTV usage creating a major economic

disincentive. Even if this did not happen during

the transition period, it almost certainly would

happen eventually putting at least a cap on the

economic potential of the decision. In short,

while the second option may stir some action,
it is unlikely to be a sufficient motivator to cause

change.

The third option provides several advantages

and incentives to the manufacturer. First, NASA

funding would in whole or in part offset the costs

of development, design and retooling to build a

modular, repairable satellite. Second, it would

allow the manufacturer to develop an expertise

in such technology that may be transferable to

commercial customers in particular if it was felt

that this was the start of a trend. Finally, the

construction, launch, assembly, testing and use

of a satellite built in such a manner would pro-

vide proof of the concept. Such an event would

have an impact on the insurance market. In addi-

tion, it would have a positive engineering impact
if the new satellite were perceived to be more

technically advanced and more capable than one
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assembledandtestedon earth and launched di-

rectly. The satellite need not be geosynchronous

to accomplish most of these goals.

The other issues are of importance in look-

ing at this and the following option. These are,

first, the importance of the pricing policy as dis-
cussed in Subsection V-7.1.2. Even if several suc-

cessful NASA satellites are assembled on orbit,

that will not necessarily be adequate incentive

to cause manufacturers to change if the economic

incentives are not there. Second, demonstration

projects are double edged swords. That is, if they

go well they can make a program. If they go
poorly, that is have significant cost over runs,

technical or performance problems, they can kill

a program forever.

The fourth option is simply a far larger ap-

plication of option three. It has two additional

benefits. First, it virtually certainly will cause
several if not all manufacturers to become in-

volved in the transition program. And, second,
it will insure the manufacturers that there is a

sufficiently large market available or products

made in this manner to encourage them to do

all production including commercial, in this way.

It should be noted, however, that this action

would cause a large number of satellites to move

through the Station which may cause it to be-

come a bottle neck in the production sequence

causing both management problems and, from

the DOD's point of view, security problems.

7.2.4 Recommendations

It is recommended that either

i. a modular design be required with assembly

and test at the Space Station for a selected
NASA satellite; or

ii. a government wide effort be initiated to re-

quire most government satellites be modular

and use the Space Station for assembly, test-

ing, and repair;

if NASA hopes to stimulate satellite manufactur-

ers to use the Space Station for assembly, testing,

and repair.

It is suggested that NASA identify suitable

NASA satellites for potential modular design,

fund some preliminary feasibility and design

studies to do proof of concept work on this issue,
and conduct whatever activities are required to

foster this concept within the other government
agencies who utilize satellites.

There is one additional and fundamental ques-
tion that must be asked: should NASA and the

government be doing this at all? In a sense,

NASA's activity is driving demand based on

NASA's desire to build such a facility. There are

a number of economic arguments and historical

examples such as the supersonic transport that

would argue against such an activity. Though

this report does not address this issue, it should

be part of any future study of this issue.

8 Conclusions

The overall purpose of this task is to study the

feasibility of on-orblt assembly and servicing of

commercial satellites. Conclusions are presented

in seven categories:

1. Space Station infrastructure

2. Serviceable satellite designs

3. On orbit assembly scenarios

4. On orbit servicing scenarios

5. Analysis of economic performance

6. Impact on the Space Station

7. Recommended NASA course of action

The results of this study indicate that servicing

offers improved economic performance provided

that the satellite development and transporta-

tion costs are not greatly affected. However, ser-

vicing has the effect of reducing the payload frac-

tion (the mass of the payload versus the dry mass

of the satellite) which in turn diminishes revenue

generating capacity. It is recommended that the

serviceable designs be given further study with

respect to these factors.
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8.1 Space Station Infrastructure

The analysis of the planned NASA infrastructure

included a survey of the proposed transportation

systems, Space Station facilities, and remote ser-

vicing systems. The purpose of this analysis is

to assess the feasibility of on-orbit assembly and

servicing and to determine any design drivers for

future satellites. The following conclusions are
reached:

• The planned Space Station infrastructure

will support on-orbit assembly and servic-

ing.

• The Integrated Orbital Servicing System

should be considered for the first generation

remote servicing system.

• The Orbital Spacecraft Consumables Resup-

ply System is too large for commercial satel-

lite servicing applications. A smaller refuel-

ing kit or OMV scavenging system should be

developed.

8.2 Serviceable Spacecraft

A subsystem level analysis of the baseline design

was conducted and three serviceable configura-

tions were developed:

i. A refuelable design may be refueled on orbit

using the OMV, OTV and the remote ser-
vicer. The decreased fuel mass allows the

satellite to accommodate a greater number

of transponders.

ii. A closed architecture design allows replace-

ment of many of the bus and payload sub-

system components as well as refueling.

iii. An open architecture design allows replace-

ment of many of the bus and payload sub-

system components as well as refueling. The

open design allows for on-orbit storage of the

used orbital replacement units.

The following conclusions about serviceable

satellites are reached:

• The major factor that limits the lifetimes
of most GEO satellites is radiation degrada-

tion. Improvements in radiation hardening

techniques for electrical components, com-

posites, and solar cells should be researched.

Solar array degradation becomes a major de-

sign driver. Improvements in solar cell tech-

nology will be required. Gallium arsenide

and indium phosphide cells which are more

resistant to radiation should be developed.

Spacecraft can be easily scarred for remote

assembly and servicing.

Serviceability imposes a 16% to 32% in-

crease in the satellite dry mass.

Modularity reduces the integration and test

costs by approximately 10%.

8.3 On Orbit Assembly

Scenarios were developed for the Open and

Closed architecture designs ranging from deploy-

ment of appendages to subsystem level assem-

bly. Following assembly and test operations, the

Space Based Orbital Transfer Vehicle (SB-OTV)

is used to transport the satellite to GEO. The

following conclusions regarding on-orbit assem-

bly are reached:

• On orbit assembly can be accomplished with

the planned NASA infrastructure.

Assembly at the Space Station reduces the

risk of launch failures and consequently
should result in lower insurance costs.

• The SB-OTV reduces the launch costsby

16%.

"Space available" launch scenarios should be

evaluated as a means of reducing transporta-

tion costs. These scenarios encourage com-

plete utilization of launch vehicle capacity

and allow launch costs to be spread among
several users.

8.4 On Orbit Servicing

Servicing scenarios are developed for the refue-

lable, open architecture and closed architecture

designs. The servicing scenarios ranged from on-

orbit refueling to subsystem level replacement.
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In summary,the followingconclusionsregarding
on-orbitservicingarereached:

• Satelliteservicingcanbeperformedin-situ
with a simpleroboticservicer.

Not all subsystemscanbeservicedwith cur-
rent technology.The levelof servicingis,
however,sufficientto restorethesatelliteto
originalcondition.

* Onorbit servicingcanbeperformedfor 30%
lessthancompletereplacement.

• Spacedebrisisan issuethat requiresfurther
study.

8.5 Economic Performance

Theeconomicperformanceof theserviceablede-
signsis evaluatedand comparedto the baseline
with thefollowingresults:

The serviceabledesignsgivegreaterrateof
returnandnetpresentvalue(NPV) thanthe
baselinedesign.

Therefuelabledesignofferedthebestperfor-
mancefollowedbytheclosedandopenarchi-
tecturesrespectively.TablesV-37 and V-
38summarizethe improvementin economic
performanceof the serviceablesatellitede-
signsrelativeto the baselinesatellites.

Theeconomicbenefitof servicingisstrongly
correlatedwith initial capital expenditures
andpayloadmassfraction. Serviceable de-

signs must continue to efficiently use avail-

able mass and power.

The question can be asked why the service-

able designs of this section show better economic

performance than the baseline design, but the

retrieval operations of Section III do not. Servic-

ing has the advantages of lower transportation

costs via multiple missions which can be sched-

uled. Repair scenarios suffer economically from

the high reliability of placement, the high per-

centage of non-repairable failures, and high re-
launch costs.

Satellite Design

Refuelable (ELV launch)

Refuelable (OTV launch)
Open Architecture
Closed Architecture

Mission Life (yr) [

Table V-37: Increase in Rate of Return (%)

(yr)Satellite Design 24

Refuelable (ELV launch) 19.2 23.9 -

Refuelable (OTV launch) 20.3 24.4 -
Open Architecture - - 21.8
Closed Architecture - - 21.4

Table V-38: Increase in NPVs ($M)

8.6 Space Station Impacts

On orbit assembly and servicing can be sup-

ported by the Phase II Space Station. In order to

reduce the impact of these activities on the Space

Station, the following changes are recommended:

• At least one OMV should be added to the

fleet to allow for extended remote opera-
tions.

The fueling platforms should have their own

dedicated robotic systems for automated fu-

eling.

Space Station insurance issues require fur-

ther study. More information is needed to

determine the effect of the Space Station on
insurance rates.

8.7 NASA Course of Action

It is recommended that NASA take the following

actions to encourage commercial satellite users
and manufacturers to build serviceable satellites:

• Pricing policies should be developed to en-

courage commercial users to utilize the

Space Station facilities in the most efficient

manner.
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• Preliminarypricesshouldbepublishedthat
allowcommercialusersto estimatethe cost
of on-orbitassemblyandservicing.
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Section VI

OTV- SATELLITE INTERFACES

The purpose of this task is to provide the com-

munications satellite requirements needed by the

General Dynamic Corporation Study, Centaur

Operations at the Space Station, (NASA/LeRC

NAS3-24900). The requirements include the fol-

lowing:

• Physical interfaces with the Centaur-G
Prime

• Mission requirements

• Payload characteristics

• Facility requirements

• System tests

This section is divided into two parts:

1. An outline of the technology demonstration

mission at the Space Station being studied

by General Dynamics Corporation, and

2. A summary of the OTV - satellite interface

requirements for the Centaur.

This information was conveyed to General Dy-

namics personnel via meetings, telephone con-

versation, and mailed material.

A key issue is the payload adaptor concept
between the Centaur, which is envisioned as act-

ing as an OTV (orbital transfer vehicle) between

LEO and GEO, and the satellite(s) comprising

the payload. The capacity of the Centaur is

such that several "garden variety" communica-

tions satellites or a single large platform can be

placed in GEO orbit simultaneously.

2 Satellite Interface Parame-

ters

Table VI-1 summarizes the satellite parameters

needed for specifying the OTV - satellite inter-

face. Parameters are presented for four different

satellite types:

1. RCA Americom K2 (3-axis)

2. Hughes HS-393 (spinner)

3. Ford small platform

4. Ford large platform

Figures VI-7 through VI-10 show layouts of

the satellites. Figure VI-11 shows the layout

of the large geostationary orbit communications

platform.

1 Centaur Operations at the

Station

Figures VI-1 through VI-6 summarize the ma-

terial showing the Centaur operations at the

Space Station technology demonstration ma-

terial. This material was supplied to Ford

Aerospace by General Dynamics, Space Systems
Division.
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Figure VI-I: Architecture for Centaur Operations at the Space Station
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Figure VI-2: Hanger Facilities for Centaur Operations at the Space Station
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UNIVERSAL PAYLOAD ADAPTER (UPA)

__ ELECTRICAL

UMBILICAL

MULTIPLE PAYLOAD ADAPTER (MPA)

SIZE: 1.3 m A'I-rACHMENT RADIUS

MASS: 43.2 kg

MECH. ATTACHMENT:
3 PT POSITIVE CONTROL
LATCHING PROVIDING
SPRING POWERED EJECTION

ELECT. ATTACHMENT:
1.6 KBPS TELEMETRY

DISCRETE COMMANDING
1.8 iON POWER I/F
PYRO CONTROL WIRING
SEPARATION BRE.AKWIRES
DUFTAS CONTROL LINES

SIZE: 4.4 m DIA TOP, 13 m DIA STD UPA BASE

MASS: 330 kg

PAYLOADS USE UNIVERSAL PAYLOAD
ADAPTER RING TO AI"rACH TO MPA.

MULTIPLE ADAPTER HAS DATA AND
COMMANDING MULTIPLEXOR

ADAPTER CAN ACCOMODATE 2,3 OR
4 PAYLOAD ARRANGEMENT

@0@
Figure VI-3: Payload Adaptor Concepts for Centaur Operations at the Space Station
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Figure VI-4: Centaur Payload Integration
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SATELLITE NAME WEIGHT LENGTH DIAMETER
(kg) (meters) (meters)

WESTAR 12 660 2.4 2.3
GOES - L 1060 2.4 2.3
GALAXY KA-2 1320 4.5 2.3
GSTAR 1340 4.5 2.3
INTELSAT Vii 1360 6.8 2.1
SBS/IBM 1360 6.1 2.1
GLOBAL POSITIONING SYSTEM (4 FLTS) 1410 3.0 2.3
FLTSATCOM 2040 4.2 3.0
HF DIRECT BRDCST PLTFRM 6360 9.1 4.6

I SAMPLE MISSION MANIFESTING OPTIONS J

CCA

Figure VI-5: Centaur Mission Model for 1997 Flight

SOLAR ARRAYS
CCA BERTHING TO COP USES

SAME SEQUENCE AND MECHANISMS
AS CCA BERTHING TO HANGAR

RMS

OMV

GRAPPLE /

RII'rlNG

EMERGENCY
JEI"IISON

SYSTEM ADAPTER -

CORE
MODULE

(AVIONICS)
(RECOMBINA_ON)

LH2

MRMS MODULE GRAPPLE_
FITnNG

ANTENNA

Figure VI-6: Accomodations Required at Space Station for Technology Demonstration Mission
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• MASS (KG)
• EOL

- BOL
• MOMENTS OF INERTIA. (KG-M 2 )

ROLL(X)
- PITCH (Y)
- YAW (Z)

• POWER

- ON-ORBIT, EOL S.S
- TRANSFER ORBIT
- STORAGE
- VOLTAGE

• TT&C
- FREQUENCY
- DATA RATE

• THERMAL CONTROL

- ROTATION RATE (Rpm)

• ACCELERATION UMITS

- AXIAL (g MAX.)
- LATERAL (g MIN.)

• STRUCTURAL FREQUENCIES
- AXIAL (Hz)

- LATERAL (Hz)

3- AXIS
RCA American K2

(FOLDED)

990
1200

1570
1350

1290

3000
30O
100

HAC HS-393
SPINNER

1133
1377

1713
1060
1713

2900
300
100

FACC ' 
PLATFOPJ_

(FOLDED)

1411
2068

1985
1685
1637

4400
3_

28-32 VDC

Ku-Band

1000 Bps

0.1

4.5
0.2

35
15

28-32 VDC

Ku-Band

1000 Bps

0.1

4.5
0.2

35
15

28-32 VDC

Ku-Band

1000 Bps

0.1

4.5

0.2

35

15

FACC GP_ LARGE-
PLATFORM

(DEPLOYED)

6600
8060

48,025
1,131,t20
1,179,145

11,000
600
250

28-32 VDC

S-Band

1000 Bps

0.1

0.1
0.1

0.1

0.1

Table VI-I: Satellite Parameters for OTV - Satellite Interface
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Figure VI-7: RCA Americom K2 Satellite with Solar Array Folded
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Figure VI-8: Hughes HS-393 Satellite
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Figure VI-9: Ford FS-1300 Satellite with Solar Array Folded

Figure VI-10: Ford FS-1300 Satellite- Deployed
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Figure VI-11: Large Geostationary Orbit Platform with Communications Payload
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Section VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations are given

for Tasks 5, 6, and 7 as analyzed in this Supple-

mentary Technical Report:

Task 5. Satellite Retrievability

Task 6. Impact of the Use of ELVs

Task 7. On-Orbit Assembly and Servicing

Task 8, Precursor OTV - Communications Satel-

lite Interface Requirements, provided informa-

tion to General Dynamics Corporation as re-

ported in Section VI and did not result in con-
clusions or recommendations.

1 Satellite Retrievability

This subsection presents the results of the Task 5

Satellite Retrievability study of Section III.

1.1 New Modeling Results

A major result is that use of the DOMSAT III fi-

nancial model which explicitly considers satellite

system reliability reveals greater benefits for use

of the Space Station in the launch of commercial

communications satellites. Not only is return-

on-investment improved (16.3% vs 9.9%), but

also financial risk (defined as the standard de-

viation of the return-on-investment) is reduced

(1.7%vs 4.8%)
The comparison is between launch of a 3-axis,

Ku-band satellite using a Space Station scenario

(deployment of appendages, checkout, and use of

OTV for transport to GEO) and launch of the
same satellite direct from earth to GEO.

A new dimension to the economic perfor-

mance tradeoffs is allowed by the computation

of the financial risk. The calculation is possible

since DOMSAT is a Monte Carlo model which

runs 1,000 cases for each scenario, with random

choices at each decision point being made based

on input reliabilities. Thus not only can the

average (expected) return-on-investment be cal-

culated, but the probability distribution of the
return-on-investment can also be determined.

For the baseline non-Station scenario, the ex-

pected return-on-investment is 9.9% with a stan-
dard deviation of 4.8%. This means there is

a .67 probability that the return-on-investment
will lie between 5.1% and 14.7% - an uncomfort-

ably large range!

For the baseline Station scenario, the expected
return-on-investment is 16.3% with a standard

deviation of 1.7%. The financial backers of the

satellite will be much happier with a return-on-

investment of 14.6% to 18%, not only because it

is higher but the range of variation is smaller.

The financial risk is lower for the Space Sta-

tion scenario because of the greater overall re-

liability achieved by use of the Space Station,

in particular the greater reliability of the space-

based OTV launch versus the solid rocket upper

stages of the ELV.

1.2 Retrieval/Repair Results

In-orbit, at the Space Station, and return-to-

earth repair scenarios are analyzed with the

DOMSAT model, with the result that there is

no improvement in economic performance (in-

creased return or reduced risk) for these scenar-
ios.

General scenarios covering all possible recover-

able/repairable failures during the life of a satel-

lite system are considered. The negative result

means that in general, space retrieval operations

are not financially viable for commercial commu-
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nications satellites.

However, specific cases may still be attractive

to retrieve. These cases include "easy" retrievals

where the probability of success is high and cost

of retrieval is low, and high value or time-criticai

payloads. Thus while retrieval/repair operations

are judged to be infrequent, NASA should make

sure a capability for retrieval and repair is avail-

able at the Space Station.

It is recommended that additional sensitivity

analyses be performed to establish the general
conditions for which retrieval of communications

satellites is cost effective. In particular, different

business scenarios should be analyzed and the fi-

nanciai impacts established for variations in reli-

ability as well as cost of transportation systems
and satellites.

1.3 Impact of Insurance

1.3.1 DOMSAT Model Results

Comparison of no insurance and insurance op-

tions shows that buying insurance acts to re-

duce financial risk, typically by 1 point in the
return-on-investment. There is also a decrease

in return-on-investment, typically 1 point for the

Space Station scenarios but as much as 5 points
for the riskier non-Station scenarios.

Modeling of the effects of changes in insurance

rates show how expected return-on-investment

slowly decreases with increasing rates. The fi-

nancial risk changes very little with change in
insurance rate for the Station scenarios. How-

ever, for the less reliable non-Station scenarios

there is a rapid increase in risk as the insurance

rate increases. Self insurance appears to be the

only viable option for non-Station scenarios if

the insurance multiplier is larger than 1.25 (i.e.

the insurance rate is more than 25% higher than

the loss rate).

1.3.2 Insurance Industry Interviews

The insurance industry sees no possibility of rate

reductions for new space operations that are

claimed to be more reliable until they have been

demonstrated. In fact, the opposite in terms of

rate increases is likely to occur. Thus it becomes

VII -

important for NASA to demonstrate the value

and safety of new space activities on demonstra-

tion missions and initial use with government
satellites. Ultimately composite rates for satel-

lite launches can be expected to approach the

10% range (from the present day 20% based on

historical failure data).

An equally important point is the expected

increase in insurance capacity as transportation

between the earth and Space Station becomes a

more routine matter with cargo manifested and

satellite components perhaps spread among sev-
eral loads.

1.4 Impact of Launch Costs

Launch costs directly influence ROI for all cases.

The Station scenarios are more sensitive to upper

stage (OTV) costs while the non-Station scenar-

ios are more influenced by the initial stage (or

Shuttle) launch costs. Non-Station scenario risk

varies rapidly with changes in launch costs.

1.5 Requirements on Space Station

Physical requirements are the same as recom-

mended in the original study technical report.

However, the provision for OTV docking with a

free satellite undergoing retrieval would greatly

increase the flexibility of retrieval operations.

This would require a delicate maneuvering ca-

pability as well as cold gas thrusters to avoid

damage to the satellite.

Operational requirements should emphasize

reduction in paper work and the fact that time is

money for commercial operations. NASA control

of the satellite should be kept to the minimum

required by safety and security.

2 Impact of ELVs

This subsection presents the results of the Task 6

Impact of ELVs study of Section IV.

2.1 Impact on APOs

Cost analysis shows that using ELVs in place of

the Shuttle changes launch costs, but does not

change the value of the APOs when comparing
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business-as-usualELV deliverywith ELV Space
Stationdelivery.

2.2 Spreading of Launch Risk

Launching multiple support vehicles on a regular

basis offers the satellite industry with a method

of spreading the launch risk over several launches

and assembling the satellite at the Space Station.

This may eventually drive insurance costs down,

increasing the values of the assembly APOs.

2.3 Need for ELVs to Support Space
Station

An ELV system is needed to support the Space

Station. It is the recommendation of this study

that an additional set of studies be developed

and followed through by NASA, or that existing
studies be given specific scope to examine the

use of a specialized ELV Space Station support

system that minimizes work load on the Space
Station crew.

The system we have developed consists of a

mid-sized ELV system with a payload carrier
of sufficient size for two common-sized satellites

without upper stages. This system could be de-

rived from an existing ELV design to defray de-

sign costs. A reusable guidance, navigation and

docking system would be attached to several pre-

designed carriers. This system would probably

use a dual propellant system, a mono or dual

propellant system to deliver the payload from a

safe ELV launch distance to the Station area,

and a cold gas system to provide the final ma-

neuvering and docking within the Space Station

safety envelope.

The maneuvering and docking system should

be designed to be a man-rated safe system that

can perform all its functions automatically. A

Space Station override should be included as

an added safety feature. The maneuvering and

docking system would be removed at the Station

with the exception of a small, low-cost, dispos-

able system that would take the carrier and any

Space Station waste into an orbit where it could

enter and burn in the atmosphere. The higher-

cost, maneuvering and docking system can be

returned on the Space Shuttle with other Space
Station items.

This is a system that can be proven early and

can solve issues dealing with liability because

the ELV system could be controlled by NASA

(being a single system) and eliminate the mul-

tiple transfers that would be required with an

OMV scenario. The use of ELVs would pro-

vide NASA with a system that can easily accom-

modate small schedule upsets because no turn-

around is needed (by having several maneuvering
and docking systems in use).

The use of such a system can provide almost

unlimited Station support, does not put a high

load on the crew, and provides a regular waste

disposal system for the Station, opening up addi-

tional STS return capability for the ELV docking
and maneuvering system and other returnable

items. Payloads, as well as hard and soft resup-

plies can be delivered to the Station on a regular

basis as well as allowing short term, high fre-

quency support (many payloads over a few days)

that could prepare the Station for a long dura-

tion confinement period for long lasting low-g

experiments.

The launch capability of the Shuttle can then

be dedicated to crew changes and large payloads

which are more infrequent, reducing the launch

load on the Shuttle fleet, extending the life of

each vehicle, and providing a system that is not

dependent on only one launch system that could

be grounded due to a failure or long, unexpected
launch delays.

3 Assembly and Servicing

This subsection presents the results of the Task 7

Assembly and Servicing study of Section V.

Servicing offers improved economic performance

provided that the satellite development and

transportation costs are not greatly affected.

However, servicing has the effect of reducing the

payload fraction (the mass of the payload ver-

sus the dry mass of the satellite) which in turn

diminishes revenue generating capacity. It is rec-

ommended that the serviceable designs be given

further study with respect to these factors.
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3.1 Space Station Infrastructure

The planned NASA infrastructure - transporta-

tion systems, Space Station facilities, and remote

servicing systems - is assessed to determine the

feasibility of on-orbit assembly and servicing and

to determine any design drivers for future satel-

lites. The following conclusions are reached:

• The planned Space Station infrastructure

will support on-orbit assembly and servic-

ing.

• The Integrated Orbital Servicing System

should be considered for the first generation

remote servicing system.

• The Orbital Spacecraft Consumables Re-

supply System is too large for commercial

satellite servicing applications. A smaller

refueling kit or OMV scavenging system

should be developed.

3.2 Serviceable Satellites

The current trend in satellite manufacture is to-

wards modularity. Modularity allows the assem-

bly and test activities for the various subsystems

to be performed in parallel and integrated as

complete assemblies. As satellites become com-

pletely modular, they can be assembled on or-

bit at the Space Station and serviced remotely.

In order to determine the benefits of servicing,

three modular satellite designs are developed:

.

,

The Refuelable Satellite Design is a

slight modification to-the baseline business-
as-usual satellite that can be launched by

ELV directly to GEO orbit. It is capable

of being refueled in orbit using the OMV,
OTV, and remote servicer. The decreased

fuel mass allows the satellite to accommo-

date a greater number of transponders.

The Closed Architecture Design is ca-

pable of being deployed and tested at the

Space Station and serviced on orbit after an

initial 12 year lifetime. It is capable of un-

dergoing refueling and replacement of life-

limited payload equipment with the excep-

tion of solar arrays.

VII - 4

3. The Open Architecture Design is capa-

ble of being transported to LEO in pieces,

assembled and tested at the Space Station,

and serviced on orbit after an initial 12 year

lifetime. It is capable of undergoing refuel-

ing and replacement of life-limited payload

equipment with the exception of solar ar-

rays. In addition it is capable of on-orbit

storage of degraded or failed orbital replace-
ment units.

The following conclusions about serviceable
satellites are reached:

• The major factor that limits the lifetimes of

most GEO satellites is radiation degrada-

tion. Improvements in radiation hardening

techniques for electrical components, com-

posites, and solar cells should be researched.

• Solar array degradation becomes a major

design driver. Improvements in solar cell

technology will be required. Gallium ar-

senide and indium phosphide cells which are
more resistant to radiation should be devel-

oped.

• Spacecraft can be easily scarred for remote

assembly and servicing.

• Serviceability imposes a 16% to 32% in-

crease in the satellite dry mass.

• Modularity reduces the integration and test

costs by approximately 10%.

3.3 On Orbit Assembly

Scenarios were developed for the Open and

Closed architecture designs ranging from deploy-

ment of appendages to subsystem level assem-

bly. Following assembly and test operations, the

Space Based Orbital Transfer Vehicle (SB-OTV)

is used to transport the satellite to GEO. The

following conclusions regarding on-orbit assem-

bly are reached:

• On orbit assembly can be accomplished with

the planned NASA infrastructure.

• Assembly at the Space Station reduces the
risk of launch failures and consequently

should result in lower insurance costs.

I l!



• The SB-OTV reduces the launch costs by
16%.

• "Space available" launch scenarios should

be evaluated as a means of reducing trans-

portation costs. These scenarios encourage
complete utilization of launch vehicle ca-

pacity and allow launch costs to be spread

among several users.

3.4 On Orbit Servicing

Servicing scenarios are developed for the refue-

lable, open architecture and closed architecture

designs. The servicing scenarios ranged from on-

orbit refueling to subsystem level replacement.

The following conclusions regarding on-orbit ser-
vicing are reached:

• Satellite servicing can be performed in-situ

with a simple robotic servicer.

• Not all subsystems can be serviced with cur-

rent technology. The level of servicing is,
however, sufficient to restore the satellite to

original condition.

• On orbit servicing can be performed for 30%

less than complete replacement.

• Space debris is an issue that requires further

study.

3.5 Economic Performance

The economic performance of the serviceable de-

signs is evaluated and compared to the baseline

with the following results:

• The serviceable designs give greater internal

rates of return (IRR) and higher net present

value (NPV) than the baseline design.

• The refuelable design offered the best per-

formance followed by the closed and open

architectures respectively. Tables VII-1 and

VII-2 summarize the improvement in eco-

nomic performance of the serviceable de-

signs compared to the baseline satellite de-

signs.

Satellite Design

Refuelable (ELV launch)

Refuelable (OTV launch)
Open Architecture
Closed Architecture

Mission Life (yr)

12114 I 24

6.7 7.7 -8_6
-I -I 6:0j

Table VII-l: Improvement in Return (%)

Satellite Design

Refuelable (ELV launch)

Refuelable (OTV launch)
Open Architecture
Closed Architecture

Mission Life (yr)

12 14 24

19-2 [ 23.9 1 -]

-I -]21141

Table VII-2: Improvement in NPV ($M)

• The economic benefit of servicing is strongly

correlated with initial capital expenditures
and payload mass fraction. Serviceable de-

signs must continue to efficiently use avail-

able mass and power.

3.6 Space Station Impacts

On orbit assembly and servicing can be sup-

ported by the Phase II Space Station. In order

to reduce the impact of these activities on the

Space Station, the following changes are recom-
mended:

At least one OMV should be added to the

fleet to allow for extended remote opera-
tions.

The fueling platforms should have their own

dedicated robotic systems for automated fu-

eling.

Space Station insurance issues require fur-

ther study. More information is needed to

determine the effect of the Space Station on
insurance rates.
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3.7 NASA Course of Action

It is recommended that NASA take the following

actions to encourage commercial satellite users
and manufacturers to build serviceable satellites:

• Pricing policies should be developed to en-

courage commercial users to utilize the

Space Station facilities in the most efficient

manner.

• Preliminary prices should be published that
allow commercial users to estimate the cost

of on-orbit assembly and servicing.

VII - 6
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Appendix A

SATELLITE FAILURE DATABASE

Type of Failure

Initial'launch stage

Upper launch stages
Apogee kick motor
Sat. before checkout

Sat. after checkout

Percentages
Failed

launches

11.8

29.4

29.4

11.8

17.6

All

launches

2.0

5.1

5.1

2.0

3.1

Totals I 100"0 I 17.3

Table A-l: Historical Failure Statistics

1 Satellite Failures

Historical incidents of satellite failure for geosyn-
chronous communications satellites are classified

into five categories:

1. Initial launch stage

2. Upper launch stages

3. Apogee kick motor

4. Satellite before initial operation

5. Satellite after initial operation

Table A-1 gives the breakdown of geosyn-
chronous communications satellite failures for

the last ten years based on the data in Table A-

3 (17 failures out of 98 attempts). Data is re-
stricted to satellites of United States and West-

ern European manufacture due the unreliability

of information on Soviet launches. Experimen-
tal, meteorological, or scientific satellites are not
in this breakdown.

Table A-2 gives geosynchronous communica-

tion satellite failures by category for the years

1963 through 1976. Table A-3 gives geosyn-

chronous communication satellite failures by cat-

egory for the years 1977 through 1986. Since the

Challenger STS failure on 28 January 1986 and

the Ariane failure on 30 May 1986, there have

been no attempts to launch commercial commu-
nication satellites.

The 1977 through 1986 time period is used to

generate failure statistics and draw conclusions

on the value of retrieval and repair operations.
In this period there were 17 failures of communi-

cations satellites out of 98 launch attempts for a

17% failure rate. (This rate does not necessarily
correspond with insurance rates which are deter-

mined by the loss ratio and the failure statistics

for all satellites using the particular launch ve-

hicle.)

Table A-4 gives the cause of failure for the

geosynchronous communication satellite failures

during the 1977 through 1986 time period. The

" * " under cause of failure indicates a partial
mission loss.

There are too many cases to tabulate of de-

graded performance of the satellite. This in-

formation tends to be tightly held and not re-

leased for general publication. However, sig-

nificant "life insurance" claims are paid against

claims of degraded performance.

2 Launch Attempts

Tables A-7 through A-10 give all geosynchronous

satellite launches for the years 1977 through

1986, and part of 1987. (There were very few

launches in 1986/1987 due to engineering prob-

lems with the Shuttle and Ariane.) Satellite

names, country of origin (if non-USA), and gov-

ernment agency responsible for the satellite op-
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SatelliteFailures
LaunchDate Satellite Launcher

12 Feb 1963 Syncom 1 Thor Delta
26 Oct 1966 Intelsat II Delta

6 Apt 1967 ATS 2 Atlas Agena

10 Aug 1968 ATS 4 Atlas Centaur

19 Sep 1968 Intelsat III-1 Delta
26 Jul 1969 Intelsat III-5 Delta

12 Aug 1969 ATS 5 Atlas Centaur
23 Jul 1970 Intelsat III-8 Delta

19 Aug 1970 Skynet 2 Delta

18 Jan 1974 Skynet 2A Delta
20 Feb 1975 Intelsat IV-6 Atlas Centaur

Totals

Failure Category
1 2 3 4 5

3 3 4 1 0

Table A-2: Geosynchronous Communication Satellite Failures by Category (1963 - 1976)

Launch

29 Sep
6 Dec

10 Apr

15 Sep

4 Apr
4 Feb

6 Feb

9 ,]un

9 Nov

31 Aug
8 Feb

12 Apr

29 Aug

12 Sep

12 Sep
28 Jan

30 May

Satellite Failures

Date Satellite (fail date) Launcher

1977 Intelsat IVA-5 Alias Centaur

1979 Satcom 3 Delta 3914

1982 Insat 1A Delta 3910, PAM
1982 Marecs B Ariane 1 - L5

1983 TDRS A STS, IUS

1984 Westar 6 STS 41B, PAM D

1984 Palapa B2 STS 41B, PAM D
1984 Intelsat V-9 Atlas Centaur

1984 Anik D2 (4/29/85) STS, PAM D

1984 Leasat 2 (9/25/85) STS, Minuteman
1985 Arabsat 1A Ariane 3

1985 Leasat 3 STS, 51D

1985 Leasat 4 STS, 51I

1985 ECS 3 Ariane 3, V15

1985 Spacenet 3 Ariane 3, V15

1986 TDRS B STS, 51L

1986 Intelsat V-14 Ariane 2
Totals

Failure Category,,
1 2 3 4

*

*

*

*

*

*

*

5 Fail

*

Totals

Attempt

*

*

*

*

*

5 5 2 3 17 98

Table A-3: Geosynchronous Communication Satellite Failures by Category (1977- 1986)

A-2
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Failure

Launch Date Satellite (fail date) Category Cause of Failure (* = partial mission loss)

? ? 1976 Satcom 2 (4/83) 5

13 Sep 1977 OTS 1 1

29 Sep 1977 Intelsat IVA-5 1

6 Feb 1979 Ayame 1 2
6 Dec 1979 RCA Satcom 3 3

22 Feb 1980 Ayame 2 3

10 Apr 1982 Insat 1A 4

15 Sep 1982 Marecs B 2

15 Sep 1982 Sirio 2 2

4 Apr 1983 TDRS A 3
4 Feb 1984 Westar 6 3

6 Feb 1984 Palapa B2 3
9 Jun 1984 Intelsat V-9 2

9 Nov 1984 Anik D2 (4/29/85) 5

8 Feb 1985 Arabsat 1A 5

12 Apr 1985 Leasat 3 3

29 Aug 1985 Leasat 4 4

31 Aug 1984 Leasat 2 (9/25/85) 5
12 Sep 1985 ECS 3 2

12 Sep 1985 Spacenet 3 2
28 Jan 1986 TDRS B 1

30 May 1986 Intelsat V-14 2

* 12/24 transponders failed after seven years
Delta vehicle failure

Atlas booster failure

Final stage collision with satellite, subnominal orbit

Apogee motor failure, subnominal orbit

Apogee motor failure

Sensor problem, stationkeeping fuel exhausted

Ariane third stage failure, falls into Atlantic

Ariane third stage failure, falls into Atlantic

* Upper stage failure, station fuel used to reach orbit

Pam D failure, STS rescue 11/84 and return to earth

Pam D failure, STS rescue 11/84 and return to earth
Centaur stage failure, fails to reach orbit

* Antenna pointing failure, loses earth lock, use of

fuel to regain control greatly shortens life.

* Attitude control failure, satellite operated manually

* IUS fails, STS mission 8/85 activates perigee stage,
satellite reaches orbit OK.

Deployment failure.

Total failure, cause unknown.

Ariane third stage fails to ignite, vehicle blown up.

Ariane third stage fails to ignite, vehicle blown up.

Shuttle booster rocket failure, destroyed by explosion.

Ariane third stage engine failure, vehicle blown up.

Table A-4: Cause of Failures for Geosynchronous Communication Satellites (1977 - 1986)
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eration (if USA) are given. The International
Numberdesignationfor the object in spaceis
givenfor thosesatellitesthat reachedorbit. The
launchdate is alsogiven,and the "Fail?" col-
umnindicatesif thesatellitefailedduringlaunch
or in orbit. (TableA-4 hasgivendetailsof the
communicationsatellitefailures.)

The satellite"type codes"areasfollows:

C = Communications satellite

S = Scientific mission

M = Meteorological satellite

X = Experimental satellite

G = Government or military

A single satellite can be several types simulta-

neous. For example, INSAT carries both com-

munications and meteorological payloads. Also

there are a significant number of government

communications satellites in geosynchronous or-

bits. (Geosynchronous orbits include geostation-

ary orbits. There are several government, exper-

imental, and meteorological satellites in geosyn-

chronous but not geostationary orbits.)

Table A-5 gives the number of satellite fail-
ures for each satellite type for launches in the

1977 through 1986 time period. Table A-6 gives

totals for the different categories of satellites

launched by year for 1977 through 1986. The

primary purpose of the satellite is picked so the

totals accurately reflect the total number of in-

tended geostationary satellites launched during

the year. Any experimental satellite is classi-
fied as such. Satellites with communications plus

other payloads (except experimental) are classi-
fied as "communications". An additional cate-

gory "Government" indicates how many satel-

lites of the "Total" belong to United States gov-

ernment agencies.

Satellite Number Number

Type Failures Attempts

C

S

M

X

G

17 98

1 3

0 9

3 11

21 121

3 21

Table A-5: Failures by Satellite Type

A-4
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Satellite Yearof Launch ]

Category I 1977[ 1978 I 197911980. ,..,] 1981 ] i982 I 1983 [ 1984 ] 1985 ] 1986 I Totals ]

Communications 6 8 5 4 7 11 13 17 22 5 98 ]

Scientific 1 2 ........ 3

Meteorological 3 1 - 1 3 - 1 - - - 9

Experimental 4 2 1 1 2 1 .... 11

Totals 14 13 6 6 12 i2 14 17 22 5 121[

Government(oftotal) 3 I 3 3 I 2 I 21 -I 21 21 31 1 211Failures (of total) 3 0 2 0 0 3 1 5 5 2 21

Table A-6: Geosynchronous Satellite Summary: 1977- 1986
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Satellite[Country/Agency]
NATO-3B
ETS-2(Kiku-2) [Japan]
Palapa-A2[Indonesia]
ESA-GEOS-1
DSCS-117
DSCS-118
Intelsat-IVAF4
GOES-2[NOAA]
GMS-1(Himawari-1)[Japan]
Sirio [Italy]
OTS 1 [ESA]
Inte]sat-IVAF5

Meteosat-I [ESA]

CS (Sakura)[Japan]
Intelsat-IV A F3

IUE-1

FLTSATCOM- 1

Intelsat-IV A F6

BSE [Japan]

OTS-2 [ESA]

GOES-3 [NOAA]
Comstar-3

ESA-GEOS-2

NATO-3 C

DSCS-II 9

DSCS-11 10

Anik-B1 [Canada]

Ayame- 1 [Japan]
FLTSATCOM-2

Westar-3

DSCS-11 13

DSCS-11 14

RCA-Satcom-3

FLTSATCOM-3

Ayame-2 [Japan]

GOES-4 [NOAA]
FLTSATCOM-4

SBS-1

Intelsat-V F2

International Launch

Number Date

1977 5-A 28 Jan

1977-14-A 23 Feb

1977-18-A 10 Mar

1977-29-A 20 Apr

1977-34-A 12 May

1977-34-B 12 May

1977-41-A 26 May
1977-48-A 16 Jun

1977-65-A 14 Jul

1977-80-A 25 Aug

(no orbit) 13 Sep

(no orbit) 29 Sep
1977-108-A 23 Nov

1977-118-A 15 Dec

1978-2-A 10 Jan

1978-12-A 26 Jan

1978-16-A 9 Feb

1978-35-A 31 Mar

1978-39-A 7 Apr

" 1978-44-A 11 May

1978-62-A 16 Jun

1978-68-A 29 Jun

1978-71-A 14 Jul

1978-106-A 19 Nov

1978-113-A 13 Dec

1978-113-B 13 Dec

1978-116-A 16 Dec

Fail?

fail

fall

fail

1979-9-A 6 Feb fail

1979-38-A 4 May

1979-72-A 10 Aug
1979-98-A 21 Nov

1979-98-B 21 Nov

1979-101-A 7 Dec fail

1980-4-A 18 Jan

1980-18-A 22 Feb

1980-74-A 9 Sep
1980-87-A 31 Oct

1980-91-A 15 Nov

1980-98-A 6 Dec

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Type Codes
S M X

S X

S

M

M

X

X

M

X

S

M

X

X

M

S

X

X

M

G

G

G

G

G

G

G

G

G

G

G

G

Table A-7: Geosynchronous Satellite Launches, 1977 - 1980
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Satellite[Country/Agency]
International Launch

Number Date Fail?
ETS-4(Kiku-3) [Japan] 1981-12-A il Feb
Comstar-4 1981-18-A 21Feb
GOES-5 1981-49-A 22May
Intelsat-VF1 1981-50-A 23May
Meteosat-2[ESA] 1981-57-A 19Jun

Apple [India] 1981-57-B 19 Jun

FLTSATCOM-5 1981-73-A 6 Aug

GMS-2 (Mimawari-2) [Japan] 1981-76-A 11 Aug

SBS-2 1981-96-A 24 Sep
RCA-Satcom-3R 1981-114-A 20 Nov

Intelsat-V F3 1981-119-A 15 Dec

Marecs-1 [ESA] 1981-122-A 20 Dec
RCA-Satcom-4 1982-4-A 16 Jan

Westar-4 1982-14-A 26 Feb

Intelsat-V F4 1982-17-A 5 Mar

Insat-lA [India] 1982-31-A 10 Apr
Westar-5 1982-58-A 9 Jun

Anik-D1 [Canada] 1982-82-A 26 Aug

Marecs B . (no orbit) 15 Sep

Sirio 2 [Italy] (no orbit) 15 Sep

Intelsat-V F5 1982-97-A 28 Sep

RCA-Satcom-5 (Aurora 1) 1982-105-A 28 Oct
SBS-3 1982-110-B 11 Nov

Anik-C3 [Canada] 1982-110-C 12 Nov

CS-2A (Sakura) [Japan] 1983-6-A 4 Feb

TDRS-1 1983-26-B 5 Apr

RCA-Satcom-6 (1R) 1983-30-A Ii Apr

GOES-6 [NOAA] 1983-41-A 28 Apr

Intelsat-V F6 1983-47-A 19 May

ECS-1 (Eutelsat-F1) [ESA] 1983-58-A 16 Jun

Anik-C2 [Canada] 1983-59-B 18 Jun

Galaxy- 1 1983-65-A 28 Jun

Telstar-301 1983-77-A 28 Jul

CS-2B(Sakura) [Japan] 1983-81-A 5 Aug

Insat-lB [India] 1983-89-B 31 Aug

RCA-Satcom-7 (2R) 1983-94-A 8 Sep

Galaxy-2 1983-98-A 22 Sep
Intelsat-V F7 1983-105-A 19 Oct

fail

fail

fail

fail

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Type Codes
S M X

X

M G

M

X

M

M

X

G

M G

M

G

G

Table A-8: Geosynchronous Satellite Launches, 1981 - 1983

A-7



Satellite[Country/Agency]
International Launch [ Type Codes

Number Date Fail? I C S M X
BS-2A[Japan]
Westar-6
Palapa-B2[Indonesia]
Intelsat-VF8
Spacenet-1
Intelsat-VF9
Eutelsat-1F2 (ECS-2)[Europe]
Telecom-1A[France]
SBS-4
Syncom-42(Leasat-2)
Telstar-302
Galaxy-3
Anik-D2 [Canada]
Syncom-41(Leasat-1)
Spacenet-2
Marecs-2[Europe]
NATO-3D
Arabsat-lA [Arab States]
SBTS-1[Brazil]
Intelsat-5F10
Anik-C1(Telesat)[Canada]
Syncom-4(Leasat3)
Gstar-1A
Telecom-lB[France]
Morelos-1[Mexico]
Arabsat-lB [Arab States]
Telstar-303
Intelsat-5AF11
Spacenet3
Aussat-1 [Australia]
ASC-1
Syncom-4(4) (Leasat4)
ECS-3[Japan]
Intelsat-5AF12
USA-11(DSCSIII type)
USA-12(DSCSIII type)
Morelos-2[Mexico]
Aussat-2[Australia]
Satcom-K2

1984-5-A 23Jan
1984-11-B 3 Feb fail
1984-11-D 6 Feb fail
1984-23-A 5 Mar
1984-49-A 22May
1984-57-A 9 Jun fail
1984-81-A 4 Aug
1984-81-B 4 Aug
1984-93:B 30Aug
1984-93-C 31Aug
1984-93-D 1 Sep
1984-101-A 21Sep
1984-113-B 9 Nov
1984-113-C 10Nov
1984-114-A 10Nov
1984-114-B 10Nov
1984-115-A 14Nov

fail

fail

1985-15-A 8 Feb fail
1985-15-B 8 Feb
1985-25-A 22Mar
1985-28-B 13Apr
1985-28-C 12Apr fail
1985-35-A 8May
1985-35-B 8May
1985-48-B 17Jun

1985-48-C 18 Jun

1985-48-D 19 Jun

1985-55-A 30 Jun

(no orbit) 1 Aug fail

1985-76-B 27 Aug

1985-76-C 27 Aug

1985-76-D 29 Aug fall

(no orbit) 12 Sep fall

1985-87-A 28 Sep
1985-92-B 3 Oct

1985-92-C 3 Oct

1985-109-B 27 Nov

1985-109-C 27 Nov

1985-109-D 28 Nov

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

M

G

G

G

G

G
G

Table A-9: Geosynchronous Satellite Launches, 1984 - 1985
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Satellite[Country/Agency]
Satcom-K1
TDRS-B
Brazilsat$2
Gstar-2
Intelsat-5F14
FltSatComF7
ECS-4(EutelsatI F-4) [Europe]
AussatK3 [Australia]

International Launch
Number Date Fail?

1986-?? 12Jan
(noorbit) 28Jan
1986-?? 29 Mar

1986-?? 29 Mar

(no orbit) 30 May
1986-?? 4 Dec

fail

fail

C

C

C

C

C

C

C M

1987-?? 16 Sep C

1987-?? 16 Sep C

Type Codes
S M X G

G

Table A-10: Geosynchronous Satellite Launches, 1986 - 1987 (incomplete)
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Appendix B

EXPENDABLE LAUNCH VEHICLE DATABASE

Information is presented on existing expend-

able launch vehicles (ELVs) in three subsections:

° Technical Comparison. A listing is given

of the physical characteristics of existing
and proposed ELVs.

2. Cost Comparison. Pricing information

on existing and proposed ELVs is given.

3. Descriptions of ELVs. A diagram and

brief discussion is given for each ELV.

1 Technical Comparison

Table B-1 gives the launch capabilities of vari-

ous existing and proposed ELVs. Vehicle capac-

ities to Low Earth Orbit (LEO) and to Geosyn-

chronous Earth Orbit (GEO) or Geosynchronous

2 Cost Comparison

Table B-2 gives a payload cost comparison chart

for various ELVs. The base price is given for

launch to geosynchronous transfer orbit (GTO),

except for the American Rocket ILV which only

provides LEO service. These prices are for use

of the entire vehicle, and are composite esti-

mates based on numerous sources. Pricing data

is difficult to obtain and prices vary according

to the number of launches purchased and other

transaction-particular items. These prices will
vary with time due to currency fluctuations for

foreign launches and competitive pressures.

Also given is the cost per kilogram of pay-
load launched to LEO and to GTO. The base

price for use of the ELV is likely to be the same

for a launch to low earth orbit (LEO) as to

geosynchronous earth orbit (GEO) or geosyn-

chronous transfer orbit (GTO), although more

payload can be carried to LEO. The reason is

that most vehicles are optimized for GEO launch
Transfer Orbit (GTO) are listed along with the and would require modification for LEO. To de-

size of the fairing which encloses the payload, liver payloads to the Space Station, some type
A variety of low earth orbits are tabulated.

The United States launch vehicles generally give

payload capacity to the Space Station (400 km

altitude and 28.5 ° inclination). Arianespace

launches from an equatorial site to 7° inclina-

tion orbits. A sun synchronous LEO orbit has

an altitude of xx_x km and X ° inclination.

For geosynchronous earth orbit capacity, the

GEO entry under "Orbit" in Table B-1 means

that the payload is placed in the GEO orbit by

the ELV. The GTO entry means that the pay-

load is placed in an elliptical orbit with apogee

height at GEO (i.e. 36,000 km), and an apogee
kick motor is required on the satellite to circu-
larize its orbit.

of upper stage is required which adds back the

cost of any third stage deleted from a non-GEO
launch.

It is interesting to note that the average cost

per kilogram to LEO is $7,540 with a standard

deviation of $2,200, and the average cost per

kilogram to GTO is $19,900 with a standard de-

viation of $5,800.

Figure B-1 gives a launch cost comparison for

ELVs and the Shuttle for optimized delivery to

LEO or a Space Station orbit. Cost and capacity

values for the ELVs built for GTO delivery are

estimated performance and cost values obtained

from the ELV manufacturers. It is apparent that

the ELVs built for GTO are not as competitive
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Company
AmericanRocket

Arianespace

ChinaGreatWall
Industry Corp.

GeneralDynamics

Japan

Martin Marietta

McDonnellDouglas

Proton

SpaceServicesInc.

Vehicle
IndustrialLaunch

Vehicle(ILV)
Ariane3

LEO Capacity
Orbit (kg)
400km, 28.5° 1,814

200 km, 0 ° 5,800

800 km, 0 ° 3,450

GEO Capacity

Orbit (kg)

- 0

GTO 1,390

Fairing Size (m)

Dia. Length

2.3 4.6

(14 m3)
(14

Ariane 4

Long March 2

Long March 3

Long March 2-4L

Atlas G

Atlas G/LPF
Atlas H

Atlas E

ALV

H-2

Titan 3

Titan 4

Delta 3920

D_ta 6920

Delta 7920

Enhanced Delta 2

Delta 2 MLV

D-l, SL-13

Conestoga IV-1

200 km, 0 ° 8,000

800 km, 0 ° 4,500

63 ° 1,500

Sun synch. 3,600

300 km 9,000

90 km, 28.5 ° 6,123

400 km, 28.5 ° 6,577

400 km, 28.5 ° 1,996

400 km, 28.5 ° 136

400 km, 28.5 ° 45,360

400 kin, 28.5 ° 8,000

400 km, 28.5 ° 14,061

400 km, 28.5 ° 17,690

160 km, 28.5 ° 3,452

320 km, 28.5 ° 3,787

320 km, 28.5 ° 4,246

320 km, 28.5 ° 4,781

480 km, 28.5 ° 4,536

400 km, 28.5 ° 5,171

400 km, 28.5 ° 20,000

Sun synch. 1,542

GTO 4,200

- 0

GTO 1,400

GEO 2,930

GTO 2,360

GTO 2,180
? ?

- 0

?

GEO 2,000

GTO 5,670

GTO 9,072

GTO 1,284

GTO 1,447
?

GTO 1,819

GTO 1,814

GTO 2,000

GTO 544

3.7 9.6

3.7 9.6

3.1 5.0

2.7 5.3

3.7 10.0

2.9 8.4

3.7 9.4
? ?

?
? ?

3.7 12.0

? ?

4.4 12.2

2.4

2.5 4.8

2.5 4.8

2.8 6.2

2.8 6.2

?

4.2 7.5

1.2 4.6

Table B-l: Commercial Expendable Launch Vehicle Database
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Launch Vehicle

American Rocket, ILV
Arianespace, Ariane 4

China Great Wall, Long March 3

Gen. Dynamics, Atlas/Centaur G

Martin Marietta, Titan 4

McDonnell Douglas, Delta 2
McDonnell Douglas, Delta 6920

Space Services, Conestoga

Average Price per kilogram launched

Base Price

(to GTO)
$M

8

80

20

51

100

37

37

15

Price per Unit Mass
to LEO to GTO

$/kg $/kg

4,400

10,000 19,000

5,500 14,300

8,300 21,600

5,600 11,000

7,100 20,400

9,700 25,500

9,700 27,500

- 7,540 19,900

Table B-2: Launch Cost Comparison for Expendable Launch Vehicles

for launching payloads to the Space Station.

Figure B-2 is a plot of the optimum ELV

launch cost/kg versus maximum capacity for

launches to Geosynchronous Transfer Orbit

(GTO). Some examples (Titan, Shuttle) are

included with currently available upper stages

(Morton Thiokol Star 63F or Centaur Gl) to
compare the Space Station APO scenarios with

business-as-usual scenarios. The cost per kilo-

gram of these examples includes the upper stage

cost. It is interesting to note the closeness in

cost/kg to GTO for the three major Ameri-

can ELVs - Titan, Delta 2 and Atlas/Centaur.

This appears to be a product of the competi-

tion among commercial launchers as opposed to

the government subsidized launchers such as the

Shuttle, Ariane, and Long March.

3 Descriptions of ELVs

A diagram and brief description is provided of

the following ELVs:

1. American Rocket, ILV

2. Arianespace, Ariane 3 & 4

3. China Great Wall Industry, Long March

4. General Dynamics Atlas/Centaur

5. Japan, H-2

6. Martin Marietta, Titan 4

7. McDonnell Douglas, Delta

8. Proton Launch Vehicles

9. Space Services Inc., Conestoga

At this time there is insufficient information

about the Advanced Launch System (ALS) (for-

merly the heavy lift launch vehicle) to warrent a

detailed discussion. In general, it is anticipated

that the ALS will be able to lift from 45,000 kg

to 70,000 kg to low earth orbit (LEO) at an

initial cost of $3,300/kg dropping over time to

$1,300/kg.

3.1 American Rocket ILV

American Rocket will conduct three tests of the

Industrial Launch Vehicle (ILV) in 1988. The

ILV is a four stage vehicle designed to carry

lighter payloads. Figure B-3 shows the ILV

which has the following general characteristics:

• Height: 25 m

• Four-stage rocket

• Engines:

- Vehicle uses 19 nearly identical hybrid

rocket engines.
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-Stage 1: 12 hybrid motor nozzles
around the base of the common oxi-

dizer tank.

- Stages 2-4: 7 motors mounted in a

hexagonal cluster above the first stage.

• Cost: $6M to $8M.

3.2 Arianespace

The Ariane rocket is a program of the European

Space Agency. The Ariane 4 is a three stage

vehicle propelled by liquid engines. The rocket

is available in six different configurations con-

sisting of combinations of solid and liquid strap-
on boosters. Ariane rockets have been launched

since 1979, and Arianespace has been responsi-
ble for the launches since 1984.

Figure B-4 shows the Ariane 4. The Ariane 3

and 4 have the following general characteristics:

Ariane 3

• Height: 49 m

• Lift-off mass: 237,000 kg

• Engines:

- Core is the same as the Ariane 4

- 2 to 4 strap-on boosters (solid or

liquid propellants)

Ariane 4

• Height: 58.4 m

• Lift-off mass: 471,000 kg

• Engines:

- First stage (core) consists of four

Viking V liquid propellant en-

gines.

- Second stage consists of one

Viking IV liquid propellant engine.

- Third stage consists of one HM7

cryogenic engine.

- Strap-on boosters are the liquid

Viking VI and solids which feed

the Viking VI liquid booster.

There is little specific data available for the

Ariane 5. It is expected to be available in 1994

and be capable of lifting around 15,000 kg to

LEO. The price of the vehicle is not yet known.

The Ariane 5 will be optimized for launch to the

Space Station and is intended to be the launch

vehicle for the European Columbus module as

part of the Space Station and may provide Eu-

ropean logistics modules.

3.3 China Great Wall Industry

The first launch was the Long March 1 in 1970,

and the Long March 2 was first launched in 1972.

China Great Wall Industry Corporation claims a

100% success rate for eight launches. Figure B-5

shows a specification sheet for the Long March
2-4L.

Long March characteristics are summarized
below:

Long March 1 (CZ-1)

• 3-stage launch vehicle

• Height: 29.5 m

• Lift-off mass: 81,600 kg

• Diameter: 2.25 m

Long March 2 (CZ-2)

• 2-stage liquid rocket

• Height: 32.6 m

• Lift-off mass: 191,000 kg

• Diameter: 3.35 m

Long March 3 (CZ-3)

• 3-stage liquid rocket

• Height: 43.3 m

• Lift-off mass: 202,000 kg

• Diameter: 3.35 m

Long March 2-4L (CZ 2-4L)

• A modified Long March 2 with

stretched tanks and four liquid rocket
boosters.

• The boosters are made up of the same

propellants and engines as the first

stage.

• Lift-off mass: 419,000 kg

• Diameter: 3.35 m
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58.¢m

00.0rn.

ORIGINAL PAGE IS

D]_ _0_0_ qUALITY

FAIRING

/

m

Supporting structure

SPELDA

V.E.B, (Vehicle EClu_oment Bay) The ARIANE 4 Vehicle
Equipment Bay _sa new concept allowing easy access_btlity to
the eclu_pments w_thout _nteffering with the payload
companmenl, e_ther famng or SPELDA
Third stage: HIO
t05 meInc tons cryogenic propellant.
HM7 engine - ThruSt 62 KN _nvacuum.
Burn l_me: 725seconds.
Chamber pressure 35 bars
Interstage 2/3

Second stage: L34
34 memc tons N204 - UDMH
Wk_ng IV engine- Thrust 786 KN in vacuum
Burn t_me 123 seconds.
Chamber pressure 585 bars

Interstage 1/2

First stage: L220

226 memc tons N204 - UDMH + Hydrate of hydraz_ne

4 wk_ngV engine - Thrust .4 x 668 KN
Burn t_me: 204 seconds.
Chamber pressure 585 bars

bctu_d prooellant strap-on booster
37 metnc tons N204 - UDMH
Vtk_ng VI.engines - Thrust: 6 61 KN-
Burn t,me: 135 seconds. "

Sohd proPellam strap-on booster
9.5 metric tons propellant
Thrust: 625KN.
Burn i_me 34 seconds

Inertial guidance
Due to the _nemal guedance of the launch vehicle up to space-
craft separation. ARIANE 4 provides high orbit injection
accuracy: typtcal standard deviation values are 100 km on the
G T O. apogee. 1 km on pengee and 0 07 ° on inclination.

Soft flight environment
The soft flighl enwronmenl allows a low spacecraft design
conslra_nt level. Same acoustics, loads, thermal and shock
levels as ARtANE 2 and 3.

Figure B-4: Arianespace's Ariane 4

B-7



_RIGr51AE PAGE I5

OE __OOR QUALI2_.

|IIII( Ilfl|lR 1,11'I,5 1 I.

C_.2-4L/UPI*ER-STAGI': (;TO MISSION

* CZ2-4L: Long March 2 launch vehicle

with stretched tanks and 4

liquid rocket boosters.

* Boosters: Using same propellants &

engines with first stage.

The boosters are fixed on

f i rst stage ( non--separated )

* Upper-stage: developed for Space

Shuttle. CZ2-¢L will be

compatible with some of

Shuttle upper stages for

GTO missions.

* l._iCt-off mass: /.lg. O00 kg.

' L;_-Of_ thr.:;t: hhl_,{)()O kg.

I _X|llltlln diameter: :I.:$5 In.

B_ou_.or diameter: 1.65 m.

M_xtmum width: ti._O ,n.

* l'a|rlng diameter: /..00 m.

Stntic envelope diameter: 3.70 m.

* LEO ,'-pacity: @.O00 kg.

14 :ll =300 kJm, i=2B.5
p ,l

" Bolnq compatible with [ollowing

Ul)l)ur utagcs with their payload:;

for (]TO lnunchit_g missions: l'At4-1}2

PAN-A, hJ_S, :;COTS, IIPPM C RTV.

'• M,Ixi,.um M,_LelIiLc weight: _TO)

i,55() K9 (for /_IL% upp(-r st;t(]e) _:

I, 900 k!l { for I'AM-B2 " )

I ,S_O kq (l(+r I'AM++A " )

_,@O k,I (l(}r :;COT:; " )/_(/1

_,930 k 9 (f,)r HIg'M " ) +/_

HS- _ comntilnicat|olrl:; :;._tct | i t.r..

' Over. l l Irngth: _.50 ,..

Figure B-5: China Great Wall Industry Corporation's Long March 2-4L
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3.4 General Dynamics

The base Atlas/Centaur launch vehicle is a two

stage rocket made up of three liquid Rocket-

dyne engines. General Dynamics has launches

488 vehicles in 28 years, with 95/during the last

22 years. Atlas/Centaur launches are generally

made to geosynchronous orbit. Figure B-6 shows

the Atlas vehicle and Centaur booster family.

Figure B-7 gives the vehicle description of the
Atlas Centaur.

Basic Atlas/Centaur Vehicle

• Diameter: 3 m

• Height: 42 m

• Lift-off mass: 164,000 kg (8,600 kg

empty weight)

• Engines: three Rocketdyne engines fu-

eled by liquid oxygen and kerosene.

3.5 Japan's H-II

The H-II rocket is a two stage launch vehicle us-

ing liquid oxygen and liquid hydrogen propulsion

systems in both stages. The rocket is equipped
with two solid rocket boosters. The rocket is

being developed by the National Space Develop-

ment Agency of Japan (NASDA), and is sched-

uled to begin flying in 1992.

Figure B-8 shows the H-II which has the fol-

lowing general characteristics:

• Lift off mass: 258,000 kg

• Height: 48 m

• Engines:

- Stage h central core of LE-7 cryogenic

engine and two solid rocket boosters.

- Stage 2:LE-5 engine.

- Boosters: solid rockets

3.6 Martin Marietta Titan 4

Martin Marietta has launched 136 Titan launch

vehicles with a 96% success rate. Figure B-9

shows the Titan 4 (34D) which has the following

general characteristics:

• Height: 61.8 m

• Engines: two seven-segment
motors ;:

solid rocket

- Stage I: one storable liquid motor.

- Stage 2: one storable liquid motor.

- Centaur upper stage is cryogenic.

3.7 McDonnell Douglas Delta

Delta rockets have placed 184 satellites into or-

bit. The vehicle's core first stage engine is

the Rocketdyne RS-27. Delta rockets gener-
ally carry their payloads into geosynchronous

orbit. There is concern among potential Delta

customers that their payloads will be bumped

by Defense Department payloads. Figure B-10

shows the Delta 2 medium launch vehicle. Fig-
ures B-11 and B-12 show shows the Delta 2 fair-

ing dimensions.

Delta 3920

• Engines: strap-on boosters are Cas-
tor IV solids.

Delta 6920

• Engines: strap-on boosters are Cas-

tor IVA solids. Stage 3 is a SGS II
derivative.

Delta 7920

• Engines: strap-on

graphite epoxy motors.

Enhanced Delta 2

boosters are

• Engines: strap-on boosters are

stretched graphite epoxy motors.

• This version of the Delta 7920 is being

studied by the Air Force.

3.8 Proton Launch Vehicles

The Proton launch vehicles are four stage, liquid

fueled rockets. The Proton is the primary heavy

lift vehicle for the Soviet Union's space program.

The vehicles have been launched 124 times since
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Figure B-6: General Dynamics' Altas Vehicle and Centaur Booster Family
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VEHICLE

!,/ FAIRINO
GENERAL O _'I'_AMIC$

DIGITAL COMPUTIIR UNIT
TELEDYNE

[NTAUfl
GENERAL DYNAM/C$

DESCRIPTION

Atlas G/Centaur D-IA is an improved version of
the current Atlas SLV-3D/Centaur D-IA con-

figuration.
Centaur D-IA, used in conjunction with AtLas

G (Figure 2-1), incorporates the following im-

provements:

• Elimination of"hydrogen peroxide boost pumps

in the propeilam supply system

• Replacement of hydrogen peroxide reaction
control system with an equivalent hydrazine
system

• Incorporation of a silver throat cast insert in
the Pratt & Whitney engines (new designation:

RL-10A-3-3A).

Atlas G is 81 inches longer than its predecessor, the
SLV-3D booster, it also incorporates a booster
thrust increase of 7,500 pounds leading [o a veha:ie

liftoff thrust of 438,000 pounds. The vehicle will
become operational on the AC-62 INTELSAT VA

flightin December 1983.

CENTAUR SYSTEM SUMMARY

Length: .30ft(9.14m) withom fairing

Dinmeter: I0 ft(3.05m)

Guid-nce: I nenial

Propulsion: P&W RL 10A-3-3A
Rated Thrust: 33,000 Ib (14"I kN)

Rated lsp (vat.): 446.4 sec
Propellants: LO2/LH2; 30.750 Ib (I3,952 kg}
Centaur Jettison: 4,200 Ib (I,905 kB)

A1133

Figure B-7: General Dynamics' Altas G/Centaur D-1A
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Figure B-8: Japan's H-II Launch Vehicle
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Solid Rocke% Motors {Two) Stage One Stage Two Centaur Upper Stage

Length 112.9 ft 86.5 ft 326 ft 29.3 ft

Diameter 10.0 (t 10,0 ft 10.0 ft 14.2 fl

Thrust 1.6 Mill;on Ib per Motor 546,000 Ib 104.000 Ib 33.000 Ib

Propel|ants Solid Storable Liquid Storable Liquid Cryogenic

Guidance: Iner_ialwith Dig;talComputer

Payload Fairing" 200 in Diameter. 86 ft' Length. Tri-Sector Des;gn, IsogridCon_ruct;on

204 ft = i
T

J 1

: ,- FL'_ /l:_,v

i \,-, :o.., I
I_;---x- ....................::T-_---T.>..,-,.I _ ' ,CT '

........................ "' : "7 I ::_;........- .......t:_ - "7

Mart[n Marietta 1

Denver Aerospace
P.O. Boz 179
MN-II_)0

Denver. Colorado 80201

I STA 500.000

Common

Figure B-9: Martin Marietta's Titan 34D7 Launch Vehicle
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Figure B-12: Delta 2 Fairing Dimensions (10 ft diameter)
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1970 with a 91% reliability rate. Figure B-13
shows the Proton D-1 SL-13 which has the fol-

lowing general characteristics:

• Engine:

-First stage: six rotatable single-

chamber liquid propellant engines.

- Second stage: four rotatable single-

chamber liquid propellant engines.

- Third stage: one fixed single-chamber

liquid propellant engine and one con-

trol liquid propellant engine with four
rotatable nozzles.

Other members of the Proton family include the

D-1/D SZ-9 and the D-1-E SL-12.

3.9 Space Services' Conestoga

The core for all Conestoga launch vehicles con-

sists of four stage, solid propellant motors,

and measures 21 m in height. In September,

1984, the Conestoga I and a mock payload were

launched on a suborbital flight. The rocket is de-

signed for smaller payloads. Figure B-14 shows

the Conestoga II.

Conestoga II

• Stage 1: two Castor IV XL motors.

• Stage 2: one Castor IV XL motor.

• Stage 3: one Star 48 motor.

• Stage 4: one Star 30 motor.

Conestoga IV

• Stage 1:

• Stage 2:

• Stage 3:

• Stage 4:

• Stages 5

four Castor IV XL motors.

two Castor IV XL motors.

one Castor IV XL motor.

one Pershing 1 motorl

and 6: (a) one Star 48; or (b)

one Star 37XF, or (c) one Star 37XF
and one Star 27.
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• Direct geosynchronous orbit
performance capability:

2000 Kg with D 4th stage
accelleration unit

• Maximum payload envelope
shape varies:

3.3 M diameter (old shroud)
4.2 M length
3.0 M diameter (new shroud)
5.2 M length

• Arian IV compatible shroud under
development & test

• Low earth orbit performance
capability:

20,000 Kg (44,700 Ibs)

• Direct insertion or 4,710 Ibs into

geostationary orbit. Higher mass
can be placed in geo transfer orbit.

• Customer payload shroud revisions
or other nations shroud accommo-
dations available upon request

• Glavkosmos Launch Vehicle for

spacecraft launch from Baykonure
Cosmodrome D-1 SL-13

Figure B-13: Proton D-1 SL-13 Launch Vehicle
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Appendix C

DOMSAT III FINANCIAL MODEL

1 Introduction

The discussion of this appendix is divided into

five parts:

1. Introduction

2. Overview of the Model

3. Transportation Scenarios

4. Input Data Definitions

5. Example of Model

2 Overview of the Model

2.1 Background

DOMSAT III is a communications satellite fi-

nancial planning model that is based on the

DOMSAT II Model developed by Princeton Syn-

ergetics Inc. The purpose of the Model is to

provide a means for evaluating the impacts of

a broad range of programs and policies on the
financial performance of communications satel-

lite business ventures. The DOMSAT II model

has been modified so as to include space opera-

tions that utilize ground-based and space-based

facilities. The result is the DOMSAT III Model,
hereafter referred to as "the Model".

2.2 Purpose of Model

The Model can be used to establish the impacts

on the financial performance of communications

satellite business ventures of the following items:

• Spacecraft technology programs such as on-

orbit propulsion and space power.

• Use of alternative space transportation sys-

tems (i.e. Shuttle, Ariane, Proton)

• Achieving improved final payload placement

accuracy (in GEO).

Different insurance rates as compared with

the self insurance option explicitly taking

into account the level of risk (insurance may

be considered separately for each operation

including launch to LEO, checkout in LEO,

transfer from LEO to GEO and initial P/L

startup.

Transportation system technology programs

(for example, low thrust from LEO to GEO;

improved upper stage reliability).

Space transportation system pricing poli-
cies.

• Pricing policies for transponders and related
services

Spacecraft configuration alternatives in-

cluding transponder arrangements and

sparing concepts.

• Regulatory programs.

In addition, the Model is specifically configured

so that it can be used to establish the impacts

on the financial performance of communications

satellite business ventures of the following items:

• Alternative placement, replacement, ser-

vice, repair policies utilizing ground-based

facilities.

• Alternative placement, replacement, ser-

vice, repair policies utilizing space-based fa-
cilities.
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All of theabovemaybeaccomplisheddirectly
by alteringthe input dataassociatedwith typi-
calbusinessscenariossoasto reflectthetechnol-
ogyattributesor policy issuesof concern.These
may vary over time. The aboveprogramand
policy impactsareestablishedin termsof thefi-
nancialimpactsonspecificbusinessscenarios(at
the macrolevel)andincludeexplicit and quan-
titative measuresof risk.

The Modelprovidesthe meansfor evaluating
the financial impactsof spacecrafttechnology
programs,spacetransportationprograms,uti-
lizationof space-basedfacilities,and alternative
placement,replacement,service-repairpolicies
on communicationssatellitebusinessventures.
It specificallyallowsfor the considerationof hy-
brid (i.e. C and Ku band) satelliteconfigura-
tions.

The anticipated results of technologypro-
gramsor policydecisionsareconvertedinto cost,
performanceand reliability attributes which
form inputs to the Model. Theseestimatesare
combinedwith a businessscenario(seePara-
graph C-2.3) to establishannualprofit (loss),
annualcashflow, cumulativecashflow, ROA,
paybackperiod,and returnon investment.The
financialperformancemeasuresareall described
by probability distributions (i.e. risk profiles)
sincecostuncertainties(i.e. uncertaintyprofiles)
and subsystemreliability areconsidered.

Theimpactof technologyprogramsandpolicy
decisionscanbeassessedin termsof thechanges
in financial performancemeasuresthat result
from differencesin performance,cost and ser-
viceattributes resultingfrom theprogramsand
policy decisions. Two analysesare necessary.
Oneanalysisisbasedupona satelliteconfigura-
tion andbusinessscenarioin the absenceof the
technologyprogramor policydecision(thebase-
line case).The secondanalysisis basedupona
satelliteconfigurationand businessscenarioin-
corporatingthe assuredresultsof the technol-
ogy programor policy decision.The difference
in the financialresultsis assumedto bedirectly
attributable to the technologyprogramorpolicy
decision.

2.3

The
ified

The Business Scenario

Modelallowsabusinessscenarioto bespec-
in termsof thefollowingitems:

Numberof yearsin the businessplan.

Maximumnumberof operationalsatellites.

Desiredlaunchschedule.

Identificationofinitial placementor mainte-
nancetransportationscenariosasafunction
of time selectedfrom the followingscenar-
ios:

1. Direct placementusingground-based
assets

2. Placementand return usingground-
basedassets

3. On-orbitrepairusing ground-based as-
sets

4. Replace/return/repair using ground-
based assets

5. Direct placement using space-based as-
sets

6. Placement and return using space-
based assets

7. On-orbit repair using space-based as-
sets

8. Replace/return/repair using space-
based assets

9. Return/replace/repalr on and from

space-based assets.

Subsections C-3 and C-4.3, and Figures C-1

through C-9 contain more complete descrip-
tions of the scenarios.

Probability of success of each of the ma-

jor steps in the selected launch and main-
tenance scenarios.

Transportation cost associated with each

major operation in the selected launch and

maintenance scenarios and cost spreading.

Identification of specific operations for
which insurance will be taken.

C-2
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• Insurance cost (expressed as a multiplier of

expected loss) for each operation and cost

spreading.

• Possible launch delays (in terms of failure

type).

• Number of narrow band transponder groups
per satellite.

• Number of wide band transponder groups
per satellite.

• Number of transponders per narrow band

group.

• Number of transponders per wide band

group.

• Number of spare transponders per narrow

band group.

• Number of spare transponders per wide

band group.

• Transponder reliability char-

acteristics (mean time to failure, expected

wearout life, variability of wearout life).

• Spacecraft support subsystem (up to 5) re-
liability characteristics.

• Types of communication service provided

(protected, protected-preemptible, unpro-

tected, and preemptible).

• Rates per narrow and wide band transpon-

ders for each type of communications ser-
vice.

• Annual demand for narrow and wide band

transponders in terms of type of service.

• Relaunch threshold in terms of number of

operational transponders.

• Annual cost of spacecraft operations.

• Annual G&A expense (fixed and variable).

• Annual R&D expense (fixed and variable).

• Other annual expenses (fixed and variable).

• Spacecraft unit recurring cost and cost

spreading.

• Spacecraft nonrecurring cost and cost

spreading.

• Spacecraft unit recurring cost learning rate.

• Depreciation lives.

• Interest rate.

• Tax related data.

• Discount rates.

• Balance sheet related data.

Many of the above variables are considered as

uncertainty variables requiring the specification

of the range of uncertainty and the form of un-

certainty.

2.4 General Description

2.4.1 Uncertainty and Reliability

The Model allows uncertainty and reliability

(initial, random and wearout failures) to be con-
sidered explicitly and quantitatively. This is

absolutely necessary when considering programs

and policies which are specifically aimed at re-

ducing uncertainty and altering reliability both

of which effect perceived risk and hence effect in-

vestment decisions. To establish the quantitative

measures of risk, the model utilizes Monte Carlo

techniques wherein the complete business sce-

nario is simulated a large number of times (typ-

ically 1,000 or more), each time randomly sam-

pling from the uncertainty profiles and the reli-

ability characteristics which are specified. The

results of all the business analyses are saved

and histograms developed of the financial per-
formance measures.

2.4.2 Performance Measures

The Model develops many financial performance

measures (i.e. the economic performance mea-

sures) including annual after tax profit, annual

cash flow, cumulative cash flow, return on sales,

return on assets, payback period, and net present
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value. Expectedvaluesand standarddevia-
tionsareestabliblishedfor all of these.Thenet
presentvalueis establishedat a numberof dis-
count ratesso that the internal rate of return
caneasilybeestablished.

2.4.3 Architecture

The Model consists basically of two parts. The

first, utilizing the desired schedule of events, de-

mand for communications services, the satellite

configuration, specified launch scenario and re-

liability characteristics, establishes the specific

timing and number of events and their costs.

The availability of transponders (taking into ac-

count failures, sparing concepts and services of-

fered) is matched against demand in order to

establish the schedule for replacement or main-

tenance flights and the timing of additional cap-

ital expenditures for replacement satellites and

launches. The timing and cost information is

then passed to the second part of the Model

which performs the financial computations and

establishes values of the economic performance
measures.

The Model is implemented such that certainty

conditions can be easily analyzed as well as the

uncertainty situations. For example, the number

of desired runs is an input parameter and can be

set to one when all ranges of uncertainty are set

to zero (i.e. minimum and maximum values are

set equal).
The datais entered into the Model via Lotus 1-

2-3, and the Model is written in Fortran. The

system has been designed for operation on the

IBM PC with all Model programs residing on a

single diskette.

3 Transportation Scenarios

The following nine transportation scenarios were

developed by Princeton Synergetics for use with

the Model. The first four pertain to operations

utilizing ground'based assets and the remaining

five scenarios use space-based assets (Space Sta-

tion). ......... " _: _

1. Launch satellite to orbit from earth.

C-4

2. Replacement and return of failed satellite to

earth for repair:

a. Launch Satellite 2 from earth.

b. Rendezvous with, retrieve, and return
Satellite 1 to earth.

3. On-orbit repair from earth:

a. Rendezvous with failed satellite in or-

bit.

b. Repair satellite in orbit.

4. Retrieve satellite from orbit to earth for re-

pair or salvage.

a. Rendezvous with of failed satellite in

orbit.

b. Retrieve and return satellite to earth.

5. Launch satellite to orbit from earth via

Space Station:

a. Transport satellite to Space Station
from earth.

b. OTV launches satellite; OTV returns

to Space Station.

6. Launch Satellite 2 and retrieve Satellite 1 to

earth via Space Station:

a. Transport Satellite 2 to Space Station;
launch with OTV.

b. Rendezvous with and retrieve failed

Satellite 1 to Space Station.

c. Transport failed Satellite 1 to earth.

7. On-orbit repair from Space Station:

a. Launch repair kit from earth to Space
Station.

b. OTV repair mission to rendezvous

with failed satellite and repair on-
orbit.

8. Retrieve failed satellite from orbit for earth

repa!r or salvage via SPace Station:

a. OTV retrieval mission to orbit; ren-

dezvous failed satellite.
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b. OTV return to SpaceStation with
failedsatellite.

c. Failedsatellitereturnedto earthforre-
pair or salvage.

9. Launch Satellite 2, retrieve Satellite 1, re-

pair at Space Station:

a. Transport Satellite 2 to Space Sta-

tion from ground; OTV launches Satel-
lite 2.

b. OTV retrieves Satellite 1 from orbit

and returns it to the Space Station.

c. Repair Satellite 1 at Space Station us-

ing parts as required from earth.

These scenarios are illustrated in Figures C-1

through C-9, and are discussed in greater detail

in Paragraph C-4.3. The orbital transfer vehi-

cle (OTV) is used for transportation from low

earth orbit (LEO) to geosynchronous earth orbit

(GEO). (Although the schematic of Figure C-1

shows a Shuttle and OTV, expendable launch

vehicles could be used for direct placement to

GEO.)
The OTV upper stage can be used to place

satellites in orbit. However, to rendezvous with

an orbiting satellite, an orbital manuevering ve-

hicle (OMV) must be carried up to GEO by the

OTV. The OMV is required for the following rea-
sons:

• The OMV can do fine maneuvers and match

spin rate with the orbiting satellite.

• The OMV has a non-reactive gas (nitrogen)

propulsion system for use in the vicinity of

a satellite. (It doesn't produce by-products

that could damage the satellite.)

For servicing or repair in orbit, a remote servic-

ing unit must also be carried up to GEO. Thus

Scenarios 3 and 7 use the OMV plus servicer

with repair kit.

4 Input Data Definitions

The Model input data definitions are divided

into 49 parts. These parts are denoted in square

brackets (for example [1]) on the input data

spreadsheets. For purpose of description, the 49

input data parts are divided into the following 17

categories and described in the 17 paragraphs of
this subsection:

1. Global Data (System) [1]

2. Global Data (Financial)[2]

3. Transportation Scenarios [3]

4. Launch Scenario Data [4-12]

5. Payload Cost Data [13]

6. Insurance Data [14]

7. Transponder Data [15]

8. Spacecraft Subsystem Data [16]

9. Transponder Demand Data [17-36]

10. Transponder Price Data [37-40]

11. Price Elasticity Data [41]

12. Correlation Data [42]

13. Spacecraft Control Operations Cost [43]

14. Engineering, R&D, and G&A [44-46]

15. Capital Expenditure Data [47]

16. Uncertainty Profile Data [48]

17. Repair Replacement Decisions [49]

4.1 Global Data - System [1]

The Global System Data describes the broad pa-
rameters of the business system that is described

by the data in this section. There are five cate-

gories of global system data:

1. NO YRS ANALYZED is the number of

years to be considered in the business plan

(must be equal to or less than 15).

2. MAX NO OPER. SATS is the maMmum

number of operational satellites to be con-

sidered in the business plan (must be equal

to or less than 5).
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Figure C-9: Scenario 9: Replace, Return to Station for Repair Using Space-Based Assets

3. MAX NO LNCH SCEN'S is the maxi-

mum number of launch scenarios active in

the Model (currently equal to 9).

4. LAUNCH DATES (YRS) is the desired

initial launch date for each of the opera-

tionai satellites (i.e. 5.5 indicates that the

initial launch attempt for the second oper-

ational satellite will occur half-way through

year 5). When an operational satellite fails

it will be replaced. For example, with the

indicated data the objective is to maintain

3 operational satellites after year 7.5.

5. NO SIMUL RUNS is the number of sim-

ulation runs to be performed in the Monte

Carlo analysis.

Table C-1 shows the form of the global data

(system) input menu with some data entered.

No. Yrs. Analyzed 15

Max. # Oper. Sats 3

Max. # Lnch Scen's 9

Desired Lnch Date (yr)
Satellite No. 1 4.0

Satellite No. 2 5.0

Satellite No. 3 6.0

Satellite No. 4 .0

Satellite No. 5 .0

No. Simul. Runs 1000

Table C-l: Global Data (System) Menu [1]

4.2 Global Data - Financial [2]

The Global Financial Data establishes the un-

derlying financial parameters to be used in the
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planning and evaluation of the business venture.

There are ten categories of global financial data:

1. DEBT SVC INT lZT (%) is the debt ser-

vice interest rate expressed as a percentage.

2. EFFECT TAX RATE (%) is the effec-

tive tax rate expressed as a percentage. It is
assumed that the communications satellite

business venture is part of a large corpo-

ration where profits and losses are consoli-
dated.

3. INVEST TAX CRDT (%) is the invest-

ment tax credit expressed as a percentage.

4. TAX CREDIT ON. The input data spec-
ifies whether or not investment tax credits

are taken on launch cost, insurance cost,

spacecraft recurring cost, and other capital

expenditures. A "1" indicates that tax cred-
its are taken and a "0" indicates that tax

credits are not taken.

5. PAYABLES (% EXP). Average number

of weeks of outstanding payables expressed

as a percentage (for example, 6 weeks of

payables is equal to 11.5% - 6/52 of a year).

6. RCVS (% REV) is the average number of

weeks of outstanding receivables expressed

as a percentage (for example, 6 weeks of re-

ceivables is equal to 11.5%).

7. CASH (% KEV) is the amount of cash,

expressed as a percentage of annual revenue,

required to meet current expenses.

8. S/C LEARN RATE (%). Spacecraft

learning rate expressed as a percentage.

The S/C unit recurring cost is reduced by a

percentage equal to 100 minus the learning

rate every time the number of years (from

the first launch) doubles.

9. DEPREC LIFE (YRS). The deprecia-

tion life (years) for launch, insurance and

spacecraft, and other capital expenditures.

Straight line depreciation is utilized.

10. DISCOUNT RATE (%) is the discount

rates (%) utilized in the computation of net

Debt SVC Int Rt % 11.0

Effect Tax Rate % 38.6

Invest Tax Crdt % .0
Tax Credit On

Launch Cost 1

Insurance Cost 1

S/C Recur. Cost 1

Other Cap. Exp. 1

Payables (% Exp.) 8.3

RCVS (% Rev.) 16.7

Cash (% Exp.) 1.5

S/C Learn Rate % 90.0

Deprec. Life (yrs)

Launch Ins, S/C 5.0

Other Cap. Exp. 10.0

I Discount Rate (%) 10 15 20 25 40 ]

Table C-2: Global Data (Financial) Menus [2]

present value of cash flow. The present
value is established at five discount rates.

Table C-2 shows the form of the global data

(financial) input menu with some data entered.

4.3 Transportation Scenarios [3]

Nine transportation scenarios are contained

within the Model; four pertain to operations uti-

lizing ground-based assets and five pertain to op-

erations utilizing space-based assets. These sce-

narios are illustrated in Figures C-1 through C-

9 and illustrate reusable systems. It should be

noted that an expendable system (for modeling

purposes) is a reusable system with the proba-

bility of recovery equal to zero.

For each year of the analysis two transporta-

tion scenarios must be identified; one for ini-

tial payload (P/L) placement operations and the

other for P/L maintenance/repair operations.

The same scenario may be identified for both

initial placement and maintenance-repair oper-
ations and the scenarios to be considered may

vary from year to year.

It is assumed that a transportation system

consists of a generic launch vehicle (LV) that
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containstwo stages(LVS1 and LVS2) and a
genericorbital transfervehicle(OTV). (Eachof
thesestagesmay actually containotherstages
but canbeconsideredfromareliability,costand
recoverypoint of view as beinglumpedinto a
singlestage.)

A brief descriptionof eachof the ninetrans-
portation scenariosis given.This is followedby
ParagraphC-4.3.10which discussesthe specifi-
cationof the scenarios.

4.3.1 Transportation Scenario 1

Scenario1 consistsof a reusableLV (note that

LVS1 may be reusable or expendable) or LV and

OTV or expendable LV and OTV for initial P/L

placement and/or replacing failed P/Ls. Sce-

nario 1 may be used in conjunction with Sce-

nario 4 for the placement portion of the replace-

return-repair mission. If reusable launch vehicles

are considered, OTV and P/L checkout failures

in LEO may be corrected when and if returned

to Earth.

4.3.2 Transportation Scenario 2

Scenario 2 consists of a reusable LV and 0TV for

placing a P/L into orbit and returning a failed

P/L in the same OTV flight. If reusable launch
vehicles are considered, OTV and P/L checkout

failures in LEO may be corrected when and if
returned to Earth.

4.3.3 Transportation Scenario 3

Scenario 3 consists of a reusable LV, LV and

OTV, or expendable LV and OTV for perform-

ing on-orbit repair at the P/L location. It is
assumed that the OTV plus OMV is required

for docking with specifically configured P/Ls. If

repair cannot be accomplished, a replacement

is performed using an appropriate specified sce-
nario. If reusable launch vehicles are considered,

OTV checkout failures may be corrected when
and if returned to Earth.

4.3.4 Transportation Scenario 4

Scenario 4 consists of a reusable LV and OTV

for acquiring and returning a failed P/L. The

OMV is transported by the OTV and is capa-

ble of docking with specifically configured P/Ls.

Replacement is performed prior to returning the

failed P/L by use of an appropriate specified sce-

nario. If reusable launch vehicles are considered,

OTV checkout failures may be corrected when
and if returned to Earth.

4.3.5 Transportation Scenario 5

Scenario 5 consists of a reusable or expendable

LV for transporting P/Ls to the Space Station.

The OTV, based at the Space Station, is used to

place the P/L into final orbit. The OTV may be

reusable or expendable. It is assumed that P/L
and OTV checkout failures can be corrected at

the Space Station.

4.3.6 Transportation Scenario 6

Scenario 6 consists of a reusable LV and OTV for

placing a P/L into orbit and returning a failed

P/L in the same OTV flight. The reusable LV

provides the new P/L to the Space Station and

returns the failed P/L from the Space Station to

Earth. It is assumed that P/L and OTV check-
out failures can be corrected at the Space Sta-

tion.

4.3.7 Transportation Scenario 7

Scenario 7 consists of a reusable LV, LV and

OTV, or expendable LV and OTV for perform-

ing on-orbit P/L repair. The OTV and OMV are

located at the Space Station. It is assumed that

the OMV is capable of docking with specifically

configured P/Ls. If repair cannot be accom-

plished, replacement will be accomplished either

via Scenarios 1 or 5 (as specified). It is assumed
that OTV checkout failures can be corrected at

the Space Station. A repair-kit is delivered from

the Earth to the Space Station and, upon mis-

sion completion, returned to Earth.

4.3.8 Transportation Scenario 8

Scenario 8 consists of a reusable OTV for ac-

quiring and returning failed P/L to the Space

Station. The P/L is then returned to Earth for

repair using a reusable LV. It is assumed that the
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OMVis capableof dockingwith specificallycon-
figuredP/Ls. Replacementis performed(prior
to returning failed P/L) usingan appropriate
specifiedscenario. It is assumedthat OTV
checkoutfailurescanbe correctedat the Space
Station.

4.3.9 Transportation Scenario9

Scenario9 consistsof a reusableLV and OTV

transportation system for placing a P/L into or-

bit and returning a failed P/L in the same OTV

flight. A P/L is stored on the Space Station and

repair is performed on the Space Station. An

initial flight is required to place a P/L into in-

ventory on the Space Station.

4.3.10 Specification of Scenarios

The transportation scenarios to be used for

placement and repair are specified as follows:

1. IN1T PLACEMENT. The identity num-

ber (1 or 5) of the transportation scenarios

(Figures C-1 and C-5) that are to be used

for initial P/L placement flights. (Specify

for each year of the time horizon.)

2. MAINT & REPAIR. The identity num-

ber (1 through 9) of the transportation sce-

narios (Figures C-1 through C-9) that are

to be used for repair flights. Repair encom-

passes replacement when on-orbit repair is

not to be considered. (Specify for each year

of the time horizon.)

3. STORAGE COST. The annual cost

(MS/year) for storing a P/L on the Space

Station. (Required only when the Mainte-

nance and Repair Scenario ID = 9.)

Table C-3 shows the form of the input menus

for the transportation scenarios and Space Sta-

tion storage cost. (Note that these menus ex-

tend from 1 to 15 years, but only a few years are
shown in this table.

4.4 Launch Scenario Data [4-12]

The launch scenario data is required for each of

the scenarios used ([4] is Scenario 1, [5] is Sce-

nario 2, ... , [12] is Scenario 9) and for each

Transportation Scenarios

I
Initial Placement

Maint. & Repair

1 2 ... 15

11 1]1 1 1

Space Station Storage Cost
YearI

[ Storage Cost (M$/yr) ] 0.0 0.0 0.0 ]

Table C-3: Transportation Menus [3]

year out to the specified time horizon. The data

consists of three parts:

• Launch reliability data

• Launch delay data

• Launch cost data

The transportation scenario data contains a

statement of the estimated probability of suc-

cess of each of the major steps in the launch and

repair sequence. It also contains a statement of

possible delays if certain types of failures occur
as well as cost data.

Both the delay and cost data may be described

as ranges of uncertainty (i.e. maximum and min-

imum values) and the form of the uncertainty

(i.e. the ID of the uncertainty profile or proba-

bility density function associated with the range

of uncertainty - the uncertainty profile data is

described in Paragraph C-4.16). Note that set-

ting the maximum and minimum values equal to

each other results in a certainty case with the ID

of the uncertainty profile being immaterial.

4.4.1 Launch Reliab|lity Data

The launch reliability data consists of the follow-

ing 11 items:

1. LVS1 SUCCESS. The probability of

booster or first-stage (LVS1) success.

2. LVS2 RECV: LVS1 FAIL. The proba-

bility of launch vehicle stage two (LVS2) re-

covery given a LVS 1 failure.

C- 13



3. LVS2 SUCC: LVS1 SUCC. The proba-
bility of LVS2successgivenaLVS1success.

. LVS2 RECV:LVS2 ABOR. The proba-

bility of LVS2 recovery given a LVS2 abort

prior to reaching LEO.

. OTV CHECKOUT SUCC. The proba-

bility of successful checkout of the OTV in
LEO.

6. LVS2 RECV: LVS2 SUCC. The prob-

ability of LVS2 success given an otherwise

successful flight:

7. OTV TRANSFER SUCC. The proba-

bility that the OTV will transfer success-

fully from LEO to GEO.

8. P/L CHECKOUT IN LEO. The prob-

ability that the P/L will checkout success-

fully in LEO (or on the Space Station).

9. P/L OK IN GEO. Probability of payload

operating successfully when in final orbit.

10. OTV REC: OTV SUCC. Probability of
0TV return and rendezvous with LVS2 or

Space Station given an otherwise successful

OTV flight.

11. OTV RENDEZVOUS. Probability that

0TV will be able to rendezvous (that is,

acquire or dock) with a failed P/L for repair

or recovery.

Certain of the above probabilities are not ap-

plicable for certain scenarios and others have

meanings only to the internal workings of the
model. These conditions are summarized in Ta-

ble C-4 (na = not applicable).

Table C-5 shows the input menu for the relia-

bility data for Scenario 1 (direct placement using

ground based assets). (Note that the menu ex-

tends from 1 to 15 years, but only a few years

are shown in this table.

Rel. l Transportation Scenario
] Item _ 1 2 3 4 5 6 7 8

D

w

J

i

-- w

- - - na na -

- - - na na -

- - - na na -

- - - na na -

1.0 - na - na

- - 1.0 1.0 - - na na -

- - na na - - na na -

na - na na na - na - -

na - - - na ....

Table C-4: Applicability Matrix: Reliability
Data

Transportation Scenarios

Probability of

LVS1 success

LVS2 Recv; LVS1 fail

LVS2 succ; LVS1 succ

LVS2 recv; LVS2 abor
OTV checkout succ

LVS2 recv; LVS2 succ

OTV transfer succ

P/L checkout in LEO

P/L OK in GEO

OTV rec; OTV succ
OTV rendezvous

Year

1 2 ... 15

.99 .99 .99

.00 .00 .00

.98 .98 .98

.00 .00 .00

1.00 1.00 1.00

.00 .00 .00

.97 .97 .97

1.00 1.00 1.00

.91 .91 .91

.00 .00 .00

.00 .00 .00

4.4.2 Launch Delay Data

The delay data indicates the time delay (years)

that is likely to result from a failure. The delay

data is specified as a range of uncertainty and

C- 14
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Delay[ TransportationScenario
[Item [1 2 3 4 5 6 7 8 9

B

na

- - na

na na -

na na -

na na -

na na na -

Table C-6: Applicability Matrix for Delay Data

the form of the uncertainty. The following six

delays may be considered:

i. Delay caused by LVS1 failures (including

stand-down and rescheduling).

ii. Delay caused by LVS2 failure (including

stand-down and rescheduling).

iii. Delay caused by OTV checkout failure

(including servicing and rescheduling of

launch).

iv. Delay caused by P/L checkout failure

(including servicing and rescheduling of

launch).

v. Delay caused by 0TV failure (including

stand-down and rescheduling).

vi. Delay caused by P/L failure (including

stand-down and rescheduling).

Not all of these delays are applicable for each

transportation scenario. Their applicability is

summarized in Table C-6 (ha = not applicable).

The following specific delay data is required

(with the exceptions indicated in Table C-6) for

each transportation scenario:

12. MAXIMUM DELAY (YRS). The max-

imum estimated delay that might result

from each of the six indicated types of fail-

ures (years).

13. MINIMUM DELAY (YRS). The mini-

mum estimated delay that might result from

each of the six indicated types of failures

(years).

14. DELAY UNCERT PROF. The ID of the

applicable uncertainty profile that describes

the form of the uncertainty within the iden-

tified range of uncertainty.

The time delay associated with testing a P/L

that has been successfully placed into final P/L

orbit may also be specified.

15. P/L START DELAY (YRS). The time

(yrs) associated with the testing of a P/L
that has been successfully placed into final

orbit before the P/L can be considered as
usable.

Table C-7 shows the input menu for the de-

lay data for Scenario 1 (direct placement using

ground based assets).

4.4.3 Launch Cost Data

Various cost data is required for each scenario.

The data consists of seven parts:

• Launch cost from earth to LEO

• Return cost from LEO to earth

• OTV cost from LEO to GEO

• OTV cost from GEO to LEO

• P/L repair cost for checkout failure

• P/L repair cost for payload failure

• 0TV cost for checkout failure

The first four cost items are specified for each

year, thus allowing cost to change with time.
These are described below and are considered

as uncertainty variables with each requiring the

specification of maximum and minimum values

together with the identity of the desired uncer-

tainty profile.

Launch Cost from Earth to LEO

16. MAXIMUM (MS). The maximum esti-

mated cost ($ millions) of transportation.

17. MINIMUM (MS). The minimum esti-

mated cost ($ millions) of transportation.

C- 15



DelayType
LVS1 LVS2 OTV C P/L C OTV P/L

i. ii. iii. iv. v. vi.
Max delay(yr) 1.5 1.5 .8 .8 1.5 1.5
Min delay(yr) 1.0 1.0 .5 .5 1.0 1.0
Delayuncertprof 2 2 2 2 2 2

P/L start delay (yr) 0.3 .....

Table C-7: Delay Data Menu, Scenario 1 [4b]

Scenario Payload Items Delivered to LEO

1 P/L, OTV

2 P/L 2, OTV, OMV

3 OTV, OMV, servicer, repair kit
4 OTV and OMV

5 P/L

6 P/L 2

7 Repair kit
8

9 Initial P/L to inventory

and repair kit.

Scenario Payload Items, Return to Earth

1 OTV

2 P/L 1, OTV, OMV

3 OTV, OMV, servicer, and

repair kit.

4 P/L, OTV, OMV
5

6 P/L 1

7 Repair kit

8 P/L

9 Repair kit

Table C-8: Earth-LEO Launch Items Table C-9: LEO-Earth Return Items

18. PROFILE (ID). The uncertainty profile
ID to be associated with the launch cost

range of uncertainty.

Table C-8 gives the items to be included in the
determination of the launch cost from Earth to

LEO.

Return Cost from LEO to Earth

19. MAXIMUM (MS). The maximum esti-

mated cost ($ millions) of transportation,

20. MINIMUM (MS). The minimum esti-

mated cost ($ millions) of transportation.

21. PROFILE (ID). The uncertainty profile
ID to be associated with the launch cost

range of uncertainty.

Table C-9 gives the items to be included in
the determination of the return cost from LEO

to earth.

OTV Cost from LEO to GEO

22. MAXIMUM (MS). The maximum es-

timated cost ($ millions) of transportation
from LEO to GEO.

23. MINIMUM (MS). The minimum esti-

mated cost ($ millions) of transportation
from LEO to GEO.

24. PROFILE (ID). The uncertainty profile
ID to be associated with the cost of trans-

ferring from LEO to GEO.

Table C-10 gives the items to be included in
the determination of the transfer cost from LEO

to GEO.

OTV Cost from GEO to LEO

C- 16
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Scenario Payload Items, LEO to GEO

1 P/L

2 P/L, 0MV

3 Repair kit, OMV, servicer
4 OMV

5 P/L

6 P/L, OMV

7 Repair kit, OMV, servicer

and repair kit.
8 OMV

9 P/L 2, OMV

pressed as a % of P/L unit recurring cost).

29. MINIMUM (o_). Minimum estimated

cost of repairing a P/L checkout failure (ex-

pressed as a % of P/L unit recurring cost.

30. PROFILE (ID). The uncertainty profile

ID to be associated with the cost of repair-
ing a checkout failure.

The P/L repair cost for checkout failure data

need only be provided for scenarios 1, 2, 5 and
6.

Table C-10: LEO - GEO Launch Items

Scenario Payload Items, GEO to LEO

2 P/L, OMV

3 Repair kit, OMV, servicer

4 P/L, 0MV
5

6 P/L, OMV

7 Repair kit, OMV, servicer

8 P/L, OMV

9 P/L 1, OMV

Table C-11: GEO to LEO Payload Items

25. MAXIMUM (MS). The maximum es-

timated cost ($ millions) of transportation
from GEO to LEO.

26. MINIMUM (MS). The minimum esti-

mated cost ($ millions) of transportation
from GEO to LEO.

27. PROFILE (ID). The uncertainty profile
ID to be associated with the cost of trans-

ferring from GEO to LEO.

Table C-11 gives the items to be included in
the determination of the transfer cost from GEO

to LEO.

P/L Repair Cost for Checkout Failure

28. MAXIMUM (%). Maximum estimated

cost of repairing a P/L checkout failure (ex-

P/L Repair Cost for P/L Failure

31. MAXIMUM (V0). Maximum estimated

cost of repairing a P/L failure (expressed as

a % of P/L unit recurring cost).

32. MINIMUM (%). Minimum estimated

cost of repairing a P/L failure (expressed

as a % of P/L unit recurring cost).

33. PROFILE (ID). The uncertainty profile

ID to be associated with the cost of repair-

ing a P/L failure.

The P/L repair cost for P/L failures data need

not be provided for scenarios 1 and 5.

OTV Cost for Checkout Failure

34. MAXIMUM (o_). Maximum estimated

cost of repairing an OTV checkout failure

(expressed as a % of OTV transfer cost from

LEO to GEO).

35. MINIMUM (%). Minimum estimated

cost of repairing an OTV checkout failure

(expressed as a % of OTV transfer cost from

LEO to GEO).

36. PROFILE (ID). The uncertainty profile

ID to be associated with the cost of repair-

ing an OTV checkout failure.

Table C-12 shows the input menu for the

launch cost data for Scenario 1 (direct placement

using ground based assets). (Note that the menu

extends from 1 to 15 years, but only a few years

are shown in this table.)
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Year

1 2 ... 15

Launch: earth to LEO

Maximum (MS) 37.0 37.0 37.0

Minimum (MS) 37.0 37.0 37.0

Profile (ID#) 1 1 1
Return: LEO to earth

Maximum (MS) 0.0 0.0 0.0

Minimum (MS) 0.0 0.0 0.0

Profile (ID#) 1 1 1
OTV: LEO to GEO

Maximum (MS) 9.5 9.5 9.5

Minimum (MS) 9.5 9.5 9.5

Profile (ID#) 1 1 1
OTV: GEO to LEO

Maximum (MS) 0.0 0.0 0.0

Minimum (MS) 0.0 0.0 0.0

Profile (ID#) 1 1 1

P/L Repair Cost for Checkout Failure

Maximum (%) 0.0

Minimum (%) 0.0

Profile (ID#) 13

P/L Repair Cost for P/L Failure

Maximum (%) 0.0

Minimum (%) 0.0

Profile (ID#) 1

OTV Repair Cost for Checkout Failure

Maximum (%) 0.0

Minimum (%) 0.0

Profile (ID#) 13

Table C-12: Launch Cost Data, Scenario 1 [4c]

Unit Recurring Cost

Maximum (MS) 54.3

Minimum (MS) 54.3

Profile (ID#) 16

Non-Recurring Cost

Maximum (MS) 6.0

Minimum (MS) 6.0

Profile (ID#) 1

Table C-13: Payload Cost Data Menu [13]

4.5 Payload Cost Data [13]

Payload (P/L) cost data consists of specifying

unit recurring cost and nonrecurring costs as

ranges of uncertainty and the form of the uncer-

tainty. Learning rates and cost spreading func-

tions are considered in Paragraphs C-4.2 and C-

4.15.2 respectively. It is assumed that the busi-

ness venture will utilize a single P/L configura-

tion for all P/Ls within the business. Table C-13

shows the input menu for the P/L cost data.

4.5.1 Unit Recurring Cost

. MAXIMUM (MS). Maximum estimated

unit recurring cost ($ million) of P/L first
unit cost.

2. MINIMUM (MS). Minimum estimated

unit recurring cost ($ million) of P/L first
unit cost.

3. PROFILE (ID). The uncertainty profile

ID to be associated with the unit P/L re-

curring cost.

4.5.2 Non-Recurring Costs

=_1.MAXIMUM (MS). Maximum estimated

nonrecurring cost ($ million) associated

with the P/L.

5. MINIMUM (MS). Minimum estimated

nonrecurring cost ($ million) associated

with the P/L.

C- 18
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6. PROFILE (ID). The uncertaintyprofile
ID to beassociatedwith the P/L nonrecur-
ring cost.

4.6 Insurance Data [14]

Insurance may be considered for launch opera-

tions (i.e. Earth to LEO), transfer operations

(i.e. LEO to GEO), P/L checkout in LEO, and

P/L start-up. Each of these may be considered

separately with the cost of the insurance estab-

lished as the expected loss (of each of the oper-

ations), taking into account all of the failure re-

covery paths and the associated probabilities of

success, and the specific operations and costs at

risk, multiplied by an insurance factor or multi-

plier that includes insurer cost margins and fees.

A multiplier of 1.5, for example, provides a cost

of insurance that is 1.5 times the expected loss.

The insurance data has two parts:

• Insurance indicator

• Insurance factors

The insurance data is specified for each of the

nine scenarios. Table C-14 shows the input menu
for the insurance data.

4.6.1 Insurance Indicator

(1 = Insurance; 0 = No Insurance.)

1. LAUNCH. Indicator of whether or not

launch insurance will be taken.

2. TRANSFER. Indicator of whether or not

transfer insurance will be taken.

3. P/L CHECKCUT. Indicator of whether

or not P/L checkout insurance will be taken.

4. P/L START-UP. Indicator of whether or

not P/L start-up insurance will be taken.

4.6.2 Insurance Factors

(Factor is multiplier of the expected loss.)

5. LAUNCH. Insurance multiplier of ex-

pected loss resulting from launch failures.

.

.

.

.

4.7

TRANSFER (LEO TO GEO). Insur-

ance multiplier of expected loss resulting
from transfer operation failures where trans-

fer is from LEO to GEO.

TRANSFER (GEO TO LEO). Insur-

ance multiplier of expected loss resulting
from transfer operation failures where trans-

fer is from GE0 to LEO.

P/L CHECKOUT. Insurance multiplier

of expected loss resulting from P/L checkout
failure.

P/L START-UP. Insurance multiplier of

expected loss resulting from P/L start-up
failure.

Transponder Data [15]

The spacecraft may consist of both narrow and

wide band transponders that may operate in

two different frequency bands (for example, C

and Ku bands). Within each of these frequency

bands there may be a number of groups of tran-

sponders (maximum of 5) with a specified num-

ber of active transponders per group (maximum

of 25) and a specified number of spare transpon-

ders per group (maximum of 10).

The reliability characteristics of each of these

transponders is described in terms of random

and wearout phenomena. Data for both the nar-

row and wide-band transponders is similar and
consists of six items:

.

o

.

NO OF GROUPS. Number of groups of

transponders within the frequency band. It

is assured that spare transponders within a

group may replace any of the active tran-

sponders within the group.

NO TRANS/GRP. Number of active

transponders per group.

SPARE TRANS/GRP. Number of spare

transponders provided initially per group.

As active transponders fail these spares are
then utilized.

4. MEAN TIME FAIL (YR). Mean time-

to-failure (year) of a transponder.
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InsuranceIndicator
(l=yes, 2=no insure)

TransportationScenario
1 2 3 4 5 6 7 8 9

Launch 1 1 1 1 i 1 1 1 1
Transfer 1 1 1 1 1 1 1 1 1
P/L checkout 1 1 1 1 0 0 1 1 1

P/L startup 1 1 1 1 1 1 1 1 1

Transportation ScenarioInsurance Factors

(Mult. of exp. loss)

Launch

Transfer(LEO to GEO)

Transfer(GEO to LEO)

P/L checkout

P/L startup

1 2 3 4 5 6 7 8 9

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 i.25

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

Table C-14: Insurance Data Menu [14]

5. EXP. WEAR.OUT (YR.S). Transponder

expected wear-out time (year).

6. STD WEAROUT (YI:tS). The wear-out

characteristics are described in terms of a

normal distribution having a specified ex-

pected value (previous response) and stan-

dard deviation (current response) about the

expected value.

Two additional items relate to the decision

to replace a satellite with a specified number of

failed transponders.

7. W/N BAND I:tEL IMP. Relative im-

portance of a wide-band transponder to a

narrow-band transponder. This is used in

making a relaunch decision based upon the

number of narrow and wide band transpon-
ders that are still available for use. The

relative importance may be based upon the

relative revenue production of the wide and

narrow band transponders.

8. TR.NSPNDR THR.SHLD RE-

LAUNCH. Effective number of transpon-

ders (narrow band plus wide-band adjusted

to reflect the relative importance) that trig-

gers a relaunch. When the effective num-

ber of transponders falls below the speci-

fied value, the particular spacecraft will be

replaced as soon as possible with another

spacecraft. The specific time of replacement

will depend upon launch delays and launch
failures.

Table C-15 shows the input menu for the tran-

sponder data.

4.8 Spacecraft Subsystem Data [16]

In addition to individual transponders, the reli-

ability characteristics of five major subsystems

- power, on-orbit propulsion (AVCS), TT&C

(tracking, telemetry and command), structure,

and other - may be considered. These may be

any subsystems, but with the general character-

istics that the failure of one of these subsystems

for all practical purposes makes the satellite in-

operative and thus sets in motion the launch of

a replacement. As with the transponders, the

reliability characteristics of each subsystem are

described in terms of random and wearout phe-
nomena as follows:

1. MEAN TIME FAIL (YR). Mean time

to failure (years) of each system.

2. EXP WEAROUT (YP,.S). Subsystem

expected wear out time (years).
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3. STD WEAROUT (YRS). Variability,
expressedasthestandarddeviation,of wear
out time(years)aboutthemeanorexpected
value.

Table C-16 showsthe input menu for the
spacecraftsubsystemdata.

NarrowBand
No. of groups 0
No. trans/grp 0

Spare trans/grp 0

Mean time fail (yr) 0

Exp. wearout (yr) 0

STD wearout (yr) 0
Wide Band

No. of groups 1

No. trans/grp 24

Spare trans/grp 6

Mean time fail (yr) 60.0

Exp. wearout (yr) 10.0

STD wearout (yr) 1.0

Wide/Narrow Rel. Imp. 1

Trnspndr Thrshld Relaunch
Satellite No: 1 17

Satellite No. 2 17

Satellite No. 3 17

Satellite No. 4 0

Satellite No. 5 0

Table C-15: Transponder Data Menu [15]

4.9 Transponder Demand Data [17-

36]

Demand data must be provided for each year
of the analysis, for narrow band and wide band

transponders, for each satellite considered and

for service type. (Items [17-21] refer to service

type i., satellites 1 to 5 respectively. Items [22-
26] refer to service type ii., satellites 1 to 5 re-

spectively. Items [27-31] refer to service type iii.,

satellites 1 to 5 respectively. Items [32-36] refer

to service type iv., satellites 1 to 5 respectively.)

The following four specific service types are
considered:

i. Protected Service. Protection is pro-

vided through provision of spares and pre-

emptible transponders.

ii. Protected/Preemptible Service. Pro-

tection is provided through available spares

and preemptible transponders. This service

may be preempted if protected users require

transponders.

.,°

111. Unprotected/Non-Preemptible. Re-

placement transponders are not guaranteed

but service may not be interrupted to pro-
vide service for other users.

iv. Preemptlble- Not Protected. May be

preempted if required to provide service for

protected users.

Table C-17 shows the input menu for the tran-

sponder demand data for service type (i.), satel-

lite no. 1 (item [17]). All demand data items,

[17] through [36], have the same format. The

menu extends from 1 to 15 years.
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l Meantime to failure(yr)
Expectedwearouttime (yr)
Standarddeviationof wearout(yr)

Subsystem ]Power AVCS TT&C Struct Other

250.0 160.0 220.0 1000.0 1000.0[
15.0 11.0 15.0 20.0 20.0
1.0 0.5 1.0 1.0 1.0

TableC-16: SpacecraftSubsystemDataMenu[16]

Narrowband
Maximumdemand
Minimumdemand
UncertProfile(ID#)

Wideband"
Maximumdemand
Minimumdemand
UncertProfile (ID#)

Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 17 17 17 17 17 17 17 17 17 17 17 17

0 0 0 17 17 17 17 17 17 17 17 17 17 17 17

0 0 0 1 3 8 14 9 8 8 7 7 7 7 7

Table C-17: Transponder Demand Data Menu (Service Type i., Satellite No. 1) [17]

4.9.1 Narrow Band Transponder De-
mand

1. MAX DEMAND. Maximum estimated

demand for narrow band transponders for

each year of the analysis (number of tran-

sponders).

2. MIN DEMAND. Minimum estimated de-

mand for narrow band transponders for each

year to the analysis (number of transpon-

ders).

3. UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

narrow band transponder demand.

4.9.2 Wide Band Transponder Demand

4. MAX DEMAND. Maximum estimated

demand for wide band transponders for each

year of the analysis (number of transpon-

ders).

5. MIN DEMAND. Minimum estimated de-

mand for wide band transponders for each

year of the analysis (number of transpon-

ders).

6. UNCEP,.T PROFILE. The name of the

uncertainty profile to be associated with the

wide band transponder demand.

4.10 Transponder Price Data [37-40]

Price data must be provided for both the narrow

band and wide band transponders for each year

of the analysis and for each of the four types of

service (as designated above). (Item [40] refers

to service type i., item [41] refers to service type

ii., item [42] refers to service type iii., and item

[43] refers to service type iv.) All pricing data is

to be provided in thousands of dollars per year.

Table C-18 shows the input menu for the

transponder price data for service type i. [37],

"Protected Service". All price data items, [37]

through [40] for the four transponder service

types (see Paragraph C-4.9), have the same for-

mat. The menu extends from 1 to 15 years.
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Year

1 2 3 4 5 6 7 8 9 10 il 12 13 14 15
Narr. band

Max price 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Min price 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Uncrtprf. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wide band

Max price 0 0 0 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400
Min price 0 0 0 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400
Uncrt prf. 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6

Table C-18: Transponder Price Data Menu (Service Type i.) [37]

4.10.1 Narrow Band Transponder Price

1. MAX PRICE. Maximum estimated price

(thousands of dollars) for narrow band tran-

sponders per year for each year of the anal-

ysis.

2. MIN PRICE. Minimum estimated price

(thousands of dollars) for narrow band tran-

sponders per year for each year of the anal-

ysis.

3. UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

price for narrow band transponders.

.

.

Wide Band Transponder Price

MAX PRICE. Maximum estimated price

(thousands of dollars) for wide band tran-

sponders per year for each year of the anal-

ysis.

MIN PRICE. Minimum estimated price

(thousands of dollars) for wide band tran-
sponders per year for each year of the anal-

ysis.

UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

price for wide band transponders.

4.11 Price Elasticity Data [41]

Price elasticity data must be provided for both

the narrow and wide band services. The price

elasticity is represented by the percent demand

% Demand Decrease Resulting Narr. Wide
from a 25% Price Increase Band Band

i. Protected

ii. Protected/Preemptible

iii. Unprotected/Non-preempt.

iv. Preemptible

0 25

0 25

0 25

0 25

Table C-19: Price Elasticity Data Menu [41]

decrease resulting from a 25 percent price in-

crease. Thus, when it is estimated that a 25

percent price increase will result in a 25 percent

decrease in demand the price elasticity is one

(i.e. unit elasticity). Table C-19 shows the form

of the price elasticity data input menu.

4.12 Correlation Data [42]

Because of the random sampling used to estab-

lish the value of the uncertainty variables (de-

mand, price, G&A expense, etc.) for each year
of the analysis, it is possible that unreasonable

year-to-year fluctuations will occur in the val-
ues of these variables. To smooth out unwar-

ranted fluctuations, year-to-year correlation co-
efficients have been introduced. The correlation

coefficient relates the current year value of a vari-

able to all previous year's values of the vari-

able. A correlation coefficient of zero implies

that there is no dependence on previous year's

values, whereas a correlation coefficient of unity

implies that this years deviation from the ex-
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pectedvalue (the result of a randomsample)
cannotexceedthepreviousyear'sdeviationfrom
its expectedvalue.

° DEMAND DATA. The correlation co-

efficient (in range of 0 to 1.0) must be

specified for both the narrow and wide

band demand for the (1) Protected, (2)

Protected-Preemptible, (3) Unprotected-

Nonpreemptible, and (4) Preemptible Ser-
vices.

. PRICE DATA. The correlation coeffi-

cient (in the range of 0 to 1.0) must be

specified for both the narrow and wide

band pricing for the (1) Protected, (2)

Protected-Preemptibte, (3) Unprotected-

Nonpreemptible, and (4) Preemptible Ser-
vices.

. S/C CONTROL OPERATIONS. Cor-

relation coefficient (in the range of 0 to 1.0)

for annual spacecraft control operations.

. ENGINEERING EXPENSE. Correla-

tion coefficient (in the range of 0 to1.0) for

annual engineering expenses.

° RgzD EXPENSE. Correlation coefficient

(in the range of 0 to 1.0) for annual R&D

expenses.

. G&A EXPENSE. Correlation coefficient

(in the range of 0 to 1.0) for annual general

and administrative expenses.

. OTHER

CAPITAL EXPENDITURES. Correla-

tion coefficient (in the range of 0 to 1.0) for

other capital expenditures.

Table C-20 shows the form of the correlation

data input menu.

4.13 S/C Control Operations [43]

Annual spacecraft control operations cost is com-

puted as a percentage of annual revenue. The

range of uncertainty (of the percentage amount)
and the associated uncertainty profile is provided

for each year of the analysis.
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Corr. Coeff.

Type of Service

Demand Data

i. Protected

ii. Prot./Preempt.

iii. Unprot./Non-preempt.

iv. Preemptible
Price Data

i. Protected

ii. Prot./Preempt.

iii. Unprot./Non-preempt.

iv. Preemptible

Narr.

Band

.0

.0

.0

.0

.0

.0

.0

.0

Wide

Band

.8

.8

.8

.8

.8

.8

.8

.8

S/C Control Operations

Engineering Expense
R&D Expense

G&A Expense

Other Capital Expenditures

Correlation

Coefficient

.8

.8

.8

.8

.8

Table C-20: Correlation Data Menus [42]
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. MAX COST (%). Maximum estimated

annual spacecraft control operations cost

expressed as a percentage of annual revenue.

. MIN COST (%). Minimum estimated an-

num spacecraft control operations cost ex-

pressed as a percentage of annual revenue.

. UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

spacecraft control and operations cost.

Table C-21 shows the input menu for the

spacecraft control operations cost [43]. The

menu extends from 1 to 15 years.

4.14 Engineering, RgzD, and GgzA

[44-46]

A common format and method is used for com-

puting annual Engineering, R&D (Research and

Development), and G&A (General and Admin-

istrative) Expenses. Therefore, only the Engi-

neering expense data is described in detail. In all

cases the expense is established as having both

a fixed component (a dollar amount specified for

each year of the analysis) and a variable com-

ponent (a percentage of revenue where the per-

centage is specified for each year of the analysis).
Both the fixed and variable components are con-

sidered as uncertainty variables. The annual ex-

pense is established as either the sum of the fixed

and variable components or as the larger of the
two components.

.

*

.

MAX (KS). Maximum estimated annual

expense (fixed component) expressed as a

dollar amount (in thousands of dollars).

MIN (KS). Minimum estimated annual

expense (fixed component) expressed as a

dollar amount (in thousands of dollars).

UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

fixed component of the annual expense.

. MAX (_o). Maximum estimated annual

expense (variable component) expressed as

a percentage of revenue.

5. MIN (%). Minimum estimated annual ex-

pense (variable component) expressed as a

percentage of revenue.

. UNCERT PROFILE. The name of the

uncertainty profile to be associated with the

variable (%) component of the annum ex-

pense.

. SUM KS & % AMTS. When set equal

to 0, the expense is the larger of the fixed

and variable components. When set equal

to 1, the expense is the sum of the fixed and

variable components.

Tables C-22, C-23, and C-24 give the input

data format menus for Engineering [44], R&D
[45], and G&A [46] respectively. The input data

covers 15 years.

4.15 Capital Expenditure Data [47]

Spacecraft recurring cost, launch cost and other

launch related costs are treated as capital expen-

ditures (i.e. depreciated). These costs occur as
a result of satellite purchases and launches and

therefore their timing depends upon the timing
of launches which is basically demand driven.

There may be other capital expenditures that

are not directly related to satellite launches (for

example, the acquisition of TT&C ground termi-

nals). These may be specified as dollar amounts

(i.e. range of uncertainty) in the year of acquisi-

tion. Cost spreading is not imposed upon these

expenditures which are depreciated starting in
the year of acquisition.

4.15.1 Other Capital Expenditures

Table C-25 gives the input data menu for the

other capital expenditure cost data (part of [47]).

The data covers 15 years.

. MAX (KS). Maximum estimated other

capital expenditure each year of the analysis

(thousands of dollars).

. MIN (KS). Minimum estimated other

capital expenditure each year of the anal-

ysis (thousands of dollars).
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Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max cost (%) 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Mincost (%) 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Uncert prof. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table C-21: Spacecraft Control Operations Data Menu [43]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max Sk/yr 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Min Sk/yr 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Uncrt prf 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Max % 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Min % 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Uncrt prf 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table C-22: Engineering Expense Data Menu [44]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max Sk/yr 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900

Min Sk/yr 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Uncrt prf 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1
Max % 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Min % 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Uncrt prf 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1

Table C-23: R&D Expense Data Menu [45]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximum Sk/yr 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500
Minimum $k/yr 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500

Uncert profile 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Maximum % .0 .0 .0. 7.3 1.3 .8 .8 .6 .6 .7 .8 1.0 1.0 1.4 2.9
Minimum % .0 .0 .0 7.3 i.3 .8 .8 .6 .6 .7 .8 1.0 1.0 1.4 2.9

Uncert profile 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table C-24: G&A Expense Data Menu [46]

Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MaxSk/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MinSk/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Uncert Profile 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table C-25: Other Capital Expenditures Data Menu [47a]
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3. UNCERT PROFILE. The nameof the
uncertaintyprofile to be associatedwith
eachyear'sothercapitalexpenditures.

4.15.2 Cost Spreading Functions

Cost spreading functions may be imposed upon

launch cost, insurance cost, spacecraft unit re-

curring cost and nonrecurring costs. The cost

spreading is performed in two different ways: in

relative time (i.e. relative to when launches oc-

cur) and in absolute time. Launch, insurance

and spacecraft recurring cost are spread back-

ward in time relative to the year of launch. Thus,

year 1 is the year that a launch takes place,

year 2 is the year prior to launch, year 3 is two

years prior to launch, etc. Nonrecurring costs are

spread in absolute time with a specified percent-

age of the nonrecurring costs occurring in year

1, year 2, etc. of the analysis.

4. LAUNCH COST. The percentage of the

launch cost spent each year relative to the

year of launch. Year 1 is the year of launch,

year 2 is the year prior to launch, etc.

5. INSURANCE. The percentage of the in-

surance cost spent each year relative to the

year of launch. Year 1 is the year of launch,

year 2 is the year prior to launch, etc.

6. S/C RECUR COST. The percentage of

the spacecraft recurring cost spent each year

relative to the year of launch. Year 1 is the

year of launch, year 2 is the year prior to
launch, etc.

7. NONRECUR COST. The percentage of

the nonrecurring cost spent each year with

year 1 being the first year of the analysis,

year 2 the second year of the analysis, etc.

Table C-26 shows the input menu for the

spacecraft subsystem data. The data covers the

five years prior to launch (beginning with the

launch year).

4.16 Uncertainty Profile Data [48]

Table C-27 gives twenty different uncertainty

profile data. The uncertainty profiles represent

Year

1 2 3 4 5

Launch cost (%/yr) 0 50 30 20 0

Insurance (%/yr) 10 70 0 20 0

S/C recur cost (%/yr) 10 20 40 30 0

Non-recur cost (%/yr) 40 40 20 0 0

Table C-26: Cost Spreading Functions [47b]

the probability density functions that may be

used for one or more of the uncertainty vari-

ables. They represent the probability distribu-

tions in the range of uncertainty. The range ot

uncertainty is in turn segmented into five equal

intervals. Thus, for Uncertainty Profile 1 there

is a 0.50 chance of selecting a value in the first of

the five equal intervals, 0.25 chance of selecting

a value in the second of the five equal intervals,

etc. Linear interpolation is used to select a spe-
cific value within each interval.

All of the uncertainty profile data may be
changed to create new uncertainty profiles. Cau-

tion: each row must add to unity! In other

words, the probabilities associated with each

profile must add to 1.00. Twenty uncertainty

profiles are stored in the data base. However, a

total of thirty (30) profiles are available for use

with profiles 21 to 30 being mirror images of pro-

files 1 through 10, respectively.

4.17 Repair/Replace Decisions [49]

Repair and replacement decisions data repre-

sents the probability that a failed satellite is not

repairable. It is assumed that this data is known

before a repair/replace mission is launched. In

the event of non-repairability, there is an imme-

diate launch of a replacement satellite. As shown

in Table C-28, the data is specified for each sce-

nario and each year. Values must be in the range

of 0.0 to 1.0, with 1.0 indicating the satellite is

not repairable and 0.0 indicating that whenever

a satellite fails, it can be repaired.
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UncertaintyProfileData
Profile
I.D.

ProfileInterval

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5
.50 .25 .15 .07 .03
.30 .25 .20 .15 .10
.30 .30 .20 .13 .07
.35 .40 .15 .07 .03
.21 .32 .27 .15 .05
.23 .30 .23 .16 .08
.25 .35 .25 .10 .05
.16 .49 .24 .09 .02
.12 .32 .32 .17 .07
.15 .34 .37 .12 .02
.20 .20 .20 .20 .20
.15 .22 .26 .22 .15
.10 .25 .30 .25 .10
.08 .25 .34 .25 .08
.05 .25 .40 .25 .05
.10 .20 .40 .20 .10
.03 .30 .34 .30 .03
.05 .20 .50 .20 .05
.03 .20 .54 .20 .03
.03 .07 .80 .07 .03

TableC-27: UncertaintyProfileMenu[48]

Scenario
....

Year

4

5

6

7

8

9

1 2 ... 15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

.15 .15 .15

Table C-28: Repair Replacement Decisions [49]

5 Example of Input/Output

5.1 Input Data for Model

The input data for the Model follows the menus
described in Subsection C-4 and illustrated in

the tables of Subsection C-4. The entries in Ta-

bles C-1 through C-28 refer to a standard satel-

lite (1995 hybrid design) being launched from
earth to GEO orbit via Scenario 1.

5.2 Output from Model

Tables C-29 through C-33 illustrate the Model

outputs:

1. Proforma income statements (C-29 and C-

30).

2. Cash flow statements (C-32 and C-33); Net
Present Value for different discount rates

(C-31).

3. Event statistics (C-34).

All entries in these tables are expected values

except those which are standard deviations. All

results presented for each case are based upon

simulating the business venture 1,000 times (i.e.
1,000 Monte Carlo simulation runs were per-

formed).

5.2.1 Proforma Income Statement

Tables C-29 a_ud C-30 illustrates the Proforma

Income Statement which covers a 15 year period.

The business scenario is to provide communica-
tions services with three satellites launched in

the 4th, 5th and 6th years of a business venture.

The initial satellites are placed into orbit via Sce-

nario 5 (satellites are delivered to the Space Sta-

tion and placed into GEO with a space-based

orbital transfer vehicle).

The satellites are retrievable and repairable

with a probability of repair specified via input

data. A satellite previously and successfully

placed into orbit which fails due to random or
wearout failures is returned to the Space Station

for repair and placement into inventory with a

replacement satellite placed into orbit prior to
the return of the failed satellite.
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Protected

Protected/Preemptible

Unprot./non-preemptible
Preemptible

Total Revenue

Standard deviation

Launch operations
Launch insurance

Satellite

Other

Depreciation expense

S/C control operations
P/L maintenance
OTV maintenance

Space Station lease

Engineering expense
Research & development

Total operations exp. ($)
Stnd. deviation

Gross Margin ($)

Year

1 2 3 4 5 6 7 8

0 0

0 0

0 0
0 0

0 30,327 90,915 138,371 121,584 121,798

0 2,676 3,503 8,443 9,913 I0,138
0 0 0 0 0 0

0 1,487 788 2,147 5,507 5,558

0 0 0 34,483 95,206 148,960 137,005 137,360

0 0 0 9,344 15,418 12,760 6,983 5,833

0 0 0 6,143 12,302 18,627 18,837 19,263

0 0 0 802 1,559 2,299 2,313 2,341

0 0 0 7,086 13,509 19,560 19,600 19,655
0 0 0 0 0 0 0 0

0 0 0 14,031 27,370 40,485 40,750 41,258
0 0 0 138 381 596 548 549
0 0 0 0 18 152 210 421

0 0 0 0 0 0 0 0

0 0 0 1,500 1,500 1,500 1,500 1,500

1,000 1,000 1,000 1,000 1,908 2,979 2,740 2,747
1,000 1,000 1,000 1,000 1,908 2,979 2,740 2,747

2,000 2,000 2,000 17,663 33,086 48,692 "i8,488 49,223

0 0 0 37 902 2,383 2,978 4,167

-2,000 -2,000 -2,000 16,820 62,120 100,263 88,517 88,136
Standard deviation 0 0 0 9,307 14,981 13,417 8,317 8,963

2,400 2,400 1,200 0 0 0 0 0

500 500 500 3,018 1,738 1,632 1,596 1,324
0 4,243 12,850 24,670 32,887 33,825 27,001 18,662

S/C nonrecurring cost
G _z A expense

Debt service expense ($)
Before tax profit
Income tax
Investment tax credit

After tax profit ($)
Standard deviation

-4,900 -9,143 -16,550 -10,868 27,496 64,753 59,921 68,150

-1,891 -3,529 -6,388 -4,195 10,613 24,995 21,129 26,306
0 0 0 0 0 0 0 0

-3,009 -5,61:4 "-10,'162 -6,673 16,882 39,758 36,791 41,844

0 5,172 9,391 9,008 6,491 7,356231 317

Return on assets (%) -8 • -5 -5 -2 6 14 16 21

Standard deviation 1 0 0 2 3 3 3 5

Return on sales (%) 0 0 0 -14 15 26 27 30
Standard deviation 0 0 0 14 18 6 4 5

Table C-29: Proforma Income Statement (1/2)
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Protected
Protected/Preemptible
Unprot./non-preemptible
Preemptible

TotalRevenue
Standarddeviation
Launchoperations
Launchinsurance
Satellite
Other

Depreciationexpense
S/Ccontroloperations
P/L maintenance
OTVmaintenance
SpaceStationlease
Engineeringexpense
Research& development

Totaloperationsexp.($)
Stnd.deviation

Year

9 10 11 12 13 14 15

121,868 121,901 121,767 121,811 120,133 104,359 92,583

10,114 10,138 10,067 10,104 8,790 2,458 1,676
0 0 0 0 0 0 0

5,619 5,632 5,593 5,614 4,863 1,310 897

137,601 137,671 137,426 137,529 133,786 108,128 95,156

5,636 5,213 6,263 5,847 8,819 19,143 25,167

19,515 19,810 13,968 8,078 2,078 4,560 10,280

2,359 2,377 1,594 854 136 286 648

19,715 19,747 12,702 6,320 329 604 1,462
0 0 0 0 0 0 0

41,588 41,934 28,265 15,'252 2,542 5,450 12,389
550 551 550 550 535 433 381

243 281 289 263 259 1,916 4,694
0 0 0 0 0 0 0

1,500 1,500 1,500 1,500 1,500 1,500 1,500
2,752 2,753 2,749 2,751 2,676 2,165 1,916

2,752 2,753 2,749 2,751 2,676 2,165 1,916

49,386 49,772 36,101 23,066 10,187 13,627 22,797
4,078 4,471 4,803 4,965 5,036 8,168 8,058

88,216Gross Margin ($) 87,899 101,325 114,463 123,599 94,500 72,359
Standard deviation 7,898 8,006 9,064 8,731 10,618 20,311 25,886

S/C nonrecurring cost 0 0 0 0 0 0 0
G & A expense 1,326 1,464 1,599 1,875 1,838 2,014 3,260

Debt service expense ($)_.. 9,854 417 -9,657 -19,385 -27,910 -35,474 -42,374
77,036 86,017 109,383 131,973 146,670 127,961 114,474

29,736 33,203 42,222 50,941 57,773 49,393 43,029
0 0 0 0 0 0 0

47,300 52,815 67,161 81,031 91,898 78,568 68,445

6,968 7,339 8,157 8,184 8,928 12,924 15,158

Before tax profit
Income tax

Investment tax credit

After tax profit ($)
Standard deviation

Return on assets (%) 30 44 69 81 76 60 58
Standard deviation 6 10 16 18 20 24 23

Return on sales (%) 34 38 49 59 69 73 75
Standard deviation 4 5 5 5 5 9 21

Table C-30: Proforma Income Statement (2/2)
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It is assumed that the transportation system

and the OTV operations are not part of the com-
munications satellite business venture. The busi-

ness venture pays fees for services rendered and

does not pay directly for such items as 0TV

maintenance and repair (this is assumed to be

included in the cost of the 0TV). Ti/e DOM-

SAT III Model allows costs, transponder de-

mand, transponder prices, and other variables

to be considered as uncertainty variables (i.e.

ranges of uncertainty and associated probability

density functions). Because many of these vari-

ables were held constant from case to case, only
deterministic values were utilized so as not to

mask the true differences resulting from the use

of different transportation scenarios and satellite

configurations. Uncertainty variables were con-

sidered for the time delays resulting from trans-
portation system and satellite failures since these

are directly related to the transportation scenar-
ios.

Revenue is disaggregated into four service

types, three of which are considered. Launch

operations, launch insurance, satellite unit re-

curring costs and other capital expenditure items

are depreciated. Launch insurance is considered

separately for launch (to LEO), satellite check-

out in LEO, OTV transfer of satellite to GEO,

and satellite initial operational success. Any or

all of these insurance options may be taken with

the cost of insurance being a multiple (as spec-

ified via the input data) of the expected loss as

determined by reliability considerations and fail-

ure - recovery paths.

If failures occur during launch, delays are
introduced before another satellite can be

launched. During this time, additional satellite

failures may occur with consequent revenue re-

duction. Other expense items considered include

the following:

• Satellite control operation,

• Payload maintenance expense (repair of

satellite failures and repair of satellites that

do not check-out properly in LEO prior to

delivery to GEO).

• OTV maintenance expense (in keeping with

the above assumptions, this is zero for the

current analyses).

• Space Station lease expense for storing a

satellite in inventory.

• Engineering and R&D expenses.

These latter two expenses are assumed to be a

fixed annum amount or a percentage of revenue,

whichever is the larger.

Satellite nonrecurring cost is assumed to be

expensed. General and Administrative (G&A)
expense is assumed to be a fixed annum amount

plus a percentage of revenue. Debt service ex-

pense is based upon the prior year's indebted-

ness (negative of the cumulative cash flow at

any point in time). After tax profit is computed

based upon an assumed corporate tax rate con-

stant over the 15 year time horizon considered

for the business plan.

5.2.2 Cash Flow Statement

Tables C-32 and C-33 illustrate the Cash Flow

projection. Cash inflow is the sum of after tax

profit, increase in payables, decrease in receiv-

ables, decrease in cash (a specified percentage of

operating expenses) and depreciation. Cash out-

flow is the sum of losses, decrease in payables,

increase in receivables, increase in cash and cap-

ital expenditures. Net cash flow is the difference
between cash inflow and outflow. Indebtedness

is the negative of the cumulative cash flow. Thus

when indebtedness is positive, the firm is in debt

(i.e. cumulative cash outflows exceed cumulative

cash inflows) and when indebtedness is negative

the firm is out of debt. The point in time when

the indebtedness passes through zero is the pay-

back period (for the case illustrated, the payback

occurs in the 9th year).

Net present value is established at five speci-

fied discount rates, and is given in Table C-31.

The net present value is considered in two parts:

A. The net present value contribution of the

annual cash flow during the 15 year plan-

ning horizon.

B. The net present value contribution of the

last year's cash flow if this were maintained
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Year

1 2 3 4 5

Discount Rate (%) 10 15 20 25 40

Net Present Value (A) 57,518 -18,395 -59,029 -80,116 -93,991

Net Present Value (B) 150,162 51,391 20,356 8,828 1,008

Net Present Value ($) 207,680 32,997 -38,673 -71,288 -92,983

Standard Deviation 64,204 27,461 16,456 11,928 6,096

Table C-31: Net Present Value for Different Discount Rates

for all time. This is referred to as the infinite

horizon contribution.

The total net present value is the sum of the

two components. The net present value prob-

ability distribution is specified by its expected

value and standard deviation since it is a good

approximation to assume "normality". The net

present value probability distributions at the five
different discount rates are used to establish the

probability distribution of the discounted return

on investment (ROI).

5.2.3 Event Statistics

Tables C-34 and C-35 indicate the event statis-

tics in the form of the probability of the indicated

quantities (i.e., the probability density function)

for years 10 and 15. (The event statistics are

given for every year, only sample outputs for

two years are given in the tables.) The event

statistics are developed separately for the spec-

ified placement and repair scenarios. Indicated

are the identities of the specific scenarios uti-

lized in the year being displayed. (For example,

placement flights are performed using Scenario 5

and repair flights are performed using Scenario

9. Inthe eventofrepair flight failure, the place-
ment scenario is used and the results incorpo-

rated in the placement section of the table.) For

placement flights, Table C-34 indicates the prob-
ability of the number of launches paid for (if a

launch failure occurs that is covered by insur-

ance, only the initial flight is included in the fig-

ure), satellites serviced (correcting checkout fail-

ures) and repaired (correcting satellite failures

that occur after the satellite has been placed into

service), and OTVs paid for (if an OTV failure

occurs that is covered by insurance, only the ini-

tial flight is included in the figure). For repair

flights, Table C-34 indicates the probability of

the number of launches paid for, satellites ser-

viced, satellites repaired and OTVs paid for.

Referring to Table C-35, a 100 in the "0" row
indicates that there is a 100 % chance that no

events will occur, a 43 in the row, a 44 in the "1"
row and a 13 in the "2" row indicates that there

is a 43 % chance of no events, a 44 % chance of

exactly one event, and a 13 % chance of exactly

2 events occurring. Average (expected) values

and standard deviations are presented for each

of the considered events (i.e., columns).

5.2.4 Results of Example

Case 5 is based upon the use of OTVs that are

based on the Space Station. New satellites are

delivered to the Space Station and placed into

GEO via the space-based OTVs. A modular de-

signed satellite is utilized. When satellites fail

a spare satellite maintained in inventory on the

Space Station is placed into GEO and the failed

satellite returned via the OTV to the Space Sta-

tion where it is repaired and placed into inven-

tory for use when the next failure occurs. As in

Case 4, consideration is given to the fact that it is

unlikely that all satellite failures can be repaired.

When satellite failures are not repairable, new

satelliteS are placed into orbit via the use of the

Space Station and the OTV.
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After tax profit

Increase in payables
Decrease in receivables

Decrease in cash

Depreciation

Total cash inflow ($)
Loss

Decrease in payables
Increase in receivables

Increase in cash

Capital expenditures

Total cash outflow ($)
Net cash flow ($)

Standard deviation

Year

1 2 3 4 5 6 7 8

0 0 0 0 17,684 39,829 36,820 41,860
3,604 3,416 2,607 12 2 0 14 19

0 0 0 0 4 6 2,291 146
0 0 0 137 387 455 177 138

0 0 0 14,031 27,370 40,485 40,750 41,258

3,604 3,416 2,607 14,180 45,448 80,776 80,052 83,421

3,009 5,614 10,162 6,673 802 71 29 16

0 0 0 757 "2,142 2,518 977 763
0 0 0 5,760 10,144 8,983 295 205

651 617 471 2 0 0 2 3

38,516 75,428 99,431 75,686 40,887 7,167 2,942 2,356

42,176 81,659 110,064 88,877 53,975 18,738 4,246 3,344

-38,572 -78,244 -107,458 -74,697 -8,527 62,037 75,806 80,077

3,419 1,338 3,453 6,994 12,417 12,033 11,549 9,477

Indebtedness ($) 38,572 116,816 224,274 298,971 307,438 245,461 169,656 89,579
Standard deviation 3,419 4,687 3,341 7,576 19,188 28,920 36,912 42,562

Table C-32: Cash Flow Projection (1/2)

After tax profit

Increase in payables
Decrease in receivables

Decrease in cash

Depreciation

Total cash inflow ($)
Loss

Decrease in payables
Increase in receivables

Increase in cash

Capital expenditures

Total cash outflow ($)
Net cash flow ($)

Standard deviation

Year

9 10 I1 12 13 14 15

47,301 52,8i6 '67,165 ..... 81,031 91,897 78,568 68,445
21 21 110 427 179 244 0

178 153 185 167 780 4,381 3,195
137 142 107 34 55 164 413

41,588 41,588 28,265 15,252 2,542 5,450 12,389
89,226 95,064 95,832 96,911 95,453 88,807 84,443

0 0 4 0 0 0 0

758 783 594 190 304 910 2,286

219 165 144 184 155 96 1,029
4 4 20 77 32 44 0

2,456 2,529 6,635 18,967 26,193 25,031 912

3,436 3,480 7,397 19,418 26,684 26,081 4,227

85,789 91,584 88,435 77,493 68,769 62,726 80,216

9,578 9,229 10,902 11,315 16,008 23,437 12,193

Indebtedness ($) 3,789 -87,795 -176,230 -253,723 -322,493 -385,219 -465,435

Standard deviation 47,251 51,721 55,459 56,974 59,152 60,474 61,606

Table C-33: Cash Flow Projection (2/2)
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Probability of Indicated Events (%)

Placement Flights (Scenario 5) Repair Flights (Scenario 9)

Number of Launches P/Ls P/Ls OTVs Launches P/Ls P/Ls OTVs

Events Paid for Serviced Repaired Paid for Paid for Serviced Repaired Paid for

10

9
8

7

6

5
4

3

2
1

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

1 0 0 1

99 100 100 99

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 0 4 4

98 100 96 96

Average value .0 .0 .0 .0 .0 .0 .0 .0
Standard deviation .1 .0 .0 .1 .1 .0 .2 .2

Table C-34: Event Statistics (Year 10)

Probability of Indicated Events (%)

Placement Flights (Scenario 5) Repair Flights (Scenario 9!
Number of Launches P/Ls P/Ls OTVs Launches P/Ls P/Ls OTVs

Events Paid for Serviced Repaired Paid for Paid for Serviced Repaired Paid for

10

9
8

7

6

5

4
3

2

1

0

Average value

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

14 0 0

86 i00 100

0

0
0

0

0

0

0
0

1

14

86

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 11 14

46 0 46 47

51 100 43 39

.2 .0 .0 .2 .5 .0 .7 .7

Standard deviation .4 .0 .0 .4 .6 .0 .7 .7

Table C-35: Event Statistics (Year 15)

C - 34
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Appendix D

INSURANCE COMPANY INTERVIEWS

An evaluation is given based on the insurance

industry interviews of potential on-orbit opera-

tions such as assembly of satellites, retrieval of

ailing satellites, and repair at the Space Station
and relaunch.

The discussion is organized into the following
parts:

1. Specification of scenarios

2. Approach to interviews

3. Interview results

4. Summary ofinterviews

1 Specification of Scenarios

Two scenarios are proposed for evaluation by the

insurance industry:

1. On-orbit assembly of satellites

2. On-orbit repair of ailing satellites

A primary driver to the viability of a scenario is
the insurance implication. There are the follow-

ing potential benefits of the scenarios:

• One major constraint on satellite design has

historically been the shape, weight restric-

tions, and size of the payload area in the
launch vehicle. Since satellites would be

launched in components rather than as an

assembled unit, the restrictions on satellite

size, shape, and weight would now be driven

only by satellite performance and economic

considerations, not by the configuration and

capabilities of launch vehicles.

Satellites can be tested and deployed prior

to transfer to their final orbit. This may

greatly reduce the check out and operation
risk of satellite launch.

On-orbit failures may not be total losses.

If proven cost effective, a satellite could be

retrieved, repaired, and redeployed without

having to return to earth.

Aged satellites which would otherwise be

written off may be candidates for overhaul

and upgrade based on the cost and perfor-
mance characteristics of each case.

1.1 Assembly at the Space Station

With this scenario, satellite components are

launched to the Space Station via the Space

Shuttle or expendable launch vehicle. They

would then be assembled and tested at the Space

Station and the fully assembled satellite would
be transferred to its final orbit destination. The

specific issues relating to this scenario are as fol-
lows:

• To reduce the launch shock risk, the compo-

nents could be packaged in shock absorbing

material during initial launch.

• In order to spread the launch risk for a satel-

lite, its components could be launched on

a number of launch vehicles. Certain stan-

dard components could also be stored on the

space station for use during both assembly
and repair.

• The assembly process would be designed to

utilize the Space Station's automation and

robotics capabilities to reduce the need for

Space Station crew time.
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• Assembledsatelliteswould be testedand
have their solar panels and antennade-
ployedat the SpaceStation.

• Thefully deployedsatellitewouldbe trans-
ferred to its final orbit usinga low thrust
OTV.

1.2 Repair at the Space Statlon

Ailing satellitescouldbe retrievedandbrought
to the SpaceStation for repair and then re-
launched.This processwouldentail the follow-
ing stepsandissues:

Thecapabilityfor retrievalby anunmanned
OTV (or anotherviablemethod)wouldbe
designedinto the satellite prior to initial
launch.

Thesatellitewouldberetrievedfromits ex-
isting orbit and brought to the SpaceSta-
tion. Any componentsneededto repairthe
satellitewill either be in inventoryat the
SpaceStationor be transportedfromearth.

The repair would benefit from modular
satellitedesignand the useof automation
androboticson the SpaceStation.

The repairedsatellite is tested,deployed,
and transferredback to its original orbit
in the samemanneras a newlyassembled
satellite.

2 Approach

The detailed approach used to gather the infor-

mation from insurance industry executives and

draw pertinent conclusions relied on the experi-

ence The Egan Group has in the satellite indus-

try and included the following series of steps:

• Defining scenarios for assembly and repair

of satellites at the Space Station.

• Defining the characteristics of satellites hav-

ing the capability for retrievability, repair,

and assembly on orbit.

Developing an interview guide to assure that

each interview covered the same points. The
main focus of the interview was the effect

on risk and insurance rates of assembling

and repairing satellites on-orbit using Space
Station facilities.

Conducting interviews with at least one ex-

ecutive with each of five major firms in-

volved in the brokerage or underwriting of

space ventures. The firms interviewed are
as follows:

- Corron & Black, Inspace

- Frank B. Hall Inc.

-Marsh & McClennan Aviation and

Aerospace Services

- International Technology Underwriters

-Johnson & Higgins, Space Systems

Group

• Once the information was gathered we used

our experience with the satellite industry

and the space program in general to ana-

lyze the insurance industry input and draw
conclusions.

3 Interview Results

There was a diversity of opinions on the poten-
tial effect of the scenarios on risk and insurance

rates, and the economic feasibility of the scenar-

ios. The discussion is divided into the responses

to the two scenarios and a third paragraph on

general issues raised during the interviews:

1. Assembly at the Space Station

2. Retrieval and Repair

3. General Issues

3.1 Assembly of Satellites

The effects of assembling satellites on the Space

Station and then transporting them to their fi-

nal orbit should be compared with the current

practice of launching intact commercial satellites

D-2
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directly to their final orbit destination. Each ap-

proach has distinct stages where risks, and there-

fore insurance coverage and rates, are handled as
discrete entities.

The opinions of the insurance industry exec-

utives on the effect of Space Station based as-

sembly of satellites were generally favorable, but
with some serious concerns on the technical fea-

sibility and cost effectiveness of the initiative.

The majority of those interviewed saw little
effect on the rates for satellite launch from

earth to the Space Station as compared to
the current earth to low earth orbit. The

same risks would be incurred under either

approach. The expectation for this launch

segment, however, is for insurance rates to

fall in the long term to somewhere in the 5%

to 10% range as reliability increases. There

were some expected benefits that were dis-
cussed.

One executive saw the potential for

increased insurance capacity since

demonstrated reliability improvements

may draw firms not normally asso-

ciated with the space industry into
the field to insure launches to LEO.

This entry might not affect rates but

would increase capacity and thereby

help make the general placement of in-
surance easier.

Another executive was particularly in-

terested in the capability of spreading

the launch of components for a single

satellite across multiple flights. This

could provide a capability to limit the

risk associated with any one launch. If

a launch failed with only 30% of the

components for a satellite, then it be-

comes a partial loss, not a total loss as
would be the case if the entire satellite

was on board.

• Work-in-Process coverage for the satellites

will be required while the assembly process

is conducted on the Space Station. Neither

the cost nor the availability of this cover-

age is expected to be a major barrier to

the scenario. However, the issues of gen-

eral Space Station insurance and the capac-

ity problems noted in this document under

Paragraph III-5.3.3, General Issues, are per-
tinent to this issue.

The ability to test the satellite and deploy

solar arrays and antenna prior to transport

to final orbit is considered one of the impor-

tant benefits of this scenario and may lead
to lower rates for satellite check out and ini-

tial.operation coverage. However, two con-
cerns must be raised.

1. The advantage of on-orbit check out

and testing of a satellite, while benefi-

cial, represents only a small portion of

the risk associated with placing satel-

lites in orbit. The large majority of
the risk is associated with the actual

transportation of the satellite.

2. The warranty issue for the work per-
formed must also be addressed. If a

satellite fails shortly after it is deployed

on-orbit, the liability for that failure
will have to be determined. If the

government performs the assembly and
test, they will most likely not accept

any liability. If a commercial firm does

the work, then they may be liable for

negligence for work performed.

• The transport of fully deployed satellites

to their final destination will present some
technical issues which have to be addressed.

- The reliability of the low-inertia OTV

expected to transport satellites to their

final orbit will have to be proved and

may be a source of increased risk. It

may ultimately not prove to be any

more reliable than the current stages

dedicated to that purpose.

- A fully deployed satellite will have to

be protected in some way against radi-

ation during its transport through the
Van Allen belts.

The assembly of satellites on-orbit is not with-

out risks and technological challenges. However,
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the generalopinion of the satellite insurersis
that insurancerateswill probablynot poseama-
jor barrier to the effort.

3.2 Retrieval and Repair of Satellites

The issue of retrieving, repairing, and redeploy-

ing satellites from the Space Station brought the

widest range of opinions from the insurance in-

dustry. The responses ranged from those who
were extremely doubtful about the economic fea-

sibility of retrieving and redeploying satellites, to
those who felt that certain situations presented

ideal candidates for such activities. A summary

of the responses includes:

• The cost of retrieving and redeploying the

satellite must be brought down if this sce-

nario is to be implemented. The retrieval

cost will most likely far overweigh the ac-

tual cost of repair or upgrade at the Space

Station. Of particular concern, as can be

expected, is the cost of retrieval and return

to geostationary orbit. Some of the inter-

viewees felt that the transportation costs
would be an insurmountable barrier to this

effort.

• The technology for retrieving satellites must

be proven before reduced rates could be re-
alized.

• Recent history has proved to be both a pos-

itive and negative experience with the re-

trievability of satellites. It has been shown
that some satellites can be retrieved with

current technology. However, the retrieved
satellites have not been able to be resold eas-

ily and other economic as well as relaunch

problems have developed.

• High value commercial satellites are likely
to be the main market for repair.

• The amount that a customer is willing to

pay for retrieval and repair of a satellite may

be driven not only by the cost of the satellite

but also by factors such as:

- Loss of revenues/market share during

the period the satellite is inoperable.
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- Availability of alternative satellite ca-

pacity or other methods for providing
the business services.

- Lead time for launching a replacement
satellite.

The most widely touted benefit of the repair

capability is that a single component fail-

ure may not mean the total loss of a multi-
million dollar satellite. Because of this, in-

surance executives who assess rates based

on maximum possible loss may start to as-

sess certain segments of the launch process

on a maximum probable loss (which is likely

to be a lower figure) instead.

An added risk is the risk incurred during the

retrieval and repair process.

3.3 General Issues

A series of general issues were raised during our

interviews that apply to both the assembly and

repair of satellites on the Space Station:

The entire question of Space Station third

party liability insurance and workmen's

compensation was not addressed here. This

issue has and should be addressed for the

Space Station as a whole, and not just for

the satellite servicing facilities.

The introduction of new technologies and

processes may cause insurance rates to rise

initially as the new methods are proving
themselves.

A concern was raised that if a large number

of satellites are resident on the Space Sta-

tion at one time in various stages of assem-

bly and repair, then the insurance industry

capacity may be overwhelmed by the large
value of the number of satellites located at

the same location.

The satellite manufacturers will have to re-

think the design of new satellites to imple-

ment a modular format to improve the abil-

ity to assemble and repair on the Space Sta-
tion.
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The experience gained from the construc-

tion of the Space Station itself will be valu-

able in demonstrating the capability to as-

semble and repair satellites. This may con-
vince insurers there is a reduced risk to the

satellite during assembly and repair opera-
tions.

The cost of storing standard satellite com-

ponents on the Space Station may become a

significant component of overall repair costs.

A stable policy insuring access to Space Sta-

tion facilities and resources will be required

to promote this scenario.

Some industry representatives expect there
to be a trend towards lower cost satellites

with co-orbiting backups. If this ultimately

comes to fruition, then the market for on-

orbit assembly and repair services may be
reduced.

In order for the Space Station itself, much

less the satellite servicing facilities, to op-

erate and prosper, the launch industry

must show a dramatic increase in reliability.
While insurance costs for satellite launch

and operations currently comprise a large

percentage of overall project costs, a demon-

strated long term increased reliability may

help to lower insurance costs to a point
where their share of the total cost of a ven-

ture will shrink.

One of the most important points made in the

interviews is that while the concept of Space Sta-

tion based assembly and repair of satellites may

be appealing, it must be implemented effectively
in order to make it a viable, effective venture.

Unless the facilities are adequate, the venture is

effectively managed, and the policies and priori-
ties are consistent with those of the commercial

satellite industry, the scenario will most likely
not be successful.

4 Summary of Interviews

A series of observations, conclusions, and rec-
ommendations can be drawn from our insurance

industry interviews. These should outline the

areas of concern to the insurance industry, and

steps that should be taken to address issues of

concern to the insurance industry.

The insurance industry has historically been
concerned about the introduction of new

technologies. The Space Station can temper

this concern by utilizing as much proven, ex-

isting technology as is consistent with safety,

performance, and cost considerations.

• One effective method for assuring the satel-

lite insurance industry that the satellite as-

sembly and repair capability is reliable and

cost effective is to use it for actual assembly,

repair, and deployment on uninsured pay-

loads such as future generations of GOES,

TDRSS, or other government satellites. Al-

though this approach may appear to be

risky for the U. S. Government, it can be

considered a key step in the creation of

the satellite servicing facility. Once this

scenario has been tested and satisfactorily

demonstrated, the insurance industry may

be willing to provide reduced rates.

• Until the assembly and repair of satellites

becomes commonplace, customers can ex-

pect insurance rates to fluctuate signifi-

cantly in response to both successes and fail-

ures.

It will be important to keep the insurance

industry involved throughout the long plan-

ning stages of this initiative. New issues can

then be raised and clarified throughout the

entire process. Concurrence from the insur-

ance industry from the outset can help to
structure the initiative to avoid insurance

problems once the facility is operational.

It will require a major selling job on the

part of NASA and the rest of the U.S. gov-

ernment to promote this scenario and con-

vince satellite manufacturers, satellite own-

ers and operators, and the insurance com-

munity that on-orbit assembly, repair, and

upgrade of satellites is desirable from both

a technical and a cost standpoint.
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The generalissueof SpaceStation liabil-
ity and other insuranceissuesmust bead-
dressedand resolved.Every insuranceex-
ecutivewith whom we spokeraisedthese
issuesduring our conversationsasareasof
concernto the insuranceindustry.

The insuranceindustry will probably not
bea leaderin providingan incentiveto en-
couragingindustry to designmodularsatel-
lites. It will, however,supportthe scenario
andprovideinsurancecoverageat decreas-
ing rates as the reliability of the launch,
assembly,repair,and on-orbit transport of
satellitesis demonstrated.

It is possiblethat future increasedlaunch
vehiclereliability will leadto a reducedrole
for insurancein determiningthe costand
feasibilityof a spaceventure. However,it
wouldbeextremelyshort-sightedto planfor
sucha situation. It shouldbeassumedthat
the high risk spaceenvironmentwill con-
tinue to fosteran industry whereinsurance
ratesarea significantportionof total prod-
uct cost.

NASA shouldmonitor the trend towards
smaller satellites with co-orbiting dupli-
cates.This potential trendwasborn out of
the desireto reducetheriskassociatedwith
launchby loweringthe costof anindividual
satelliteand maintaincontinuityof service
in caseof anon-orbit failure.

The insuranceindustry can not be expected
to providecleardirectionto the initiative to pro-
videon-orbitassemblyandrepairof satellites.It
dearly will not be the vehicleto forcethe satel-
lite industry to redesignsatellitesto meet the
modular constructioncharacteristicsfor Space
Stationassemblyandrepair. Theinsurancein-
dustryappearsto be readyto supporteffortsto
reducecostsandriskpursuedby the satellitein-
dustry.It may,ultimately,evenplayalargepart
in implementingthe capability for satelliteser-
vicing,but doesnot appearto be readyto take
the lead in pushingthe concept. Overallrate
reductionsunder this scenarioarepossible,but
they will be realizedonly after the successand

reliabilityof theentireassemblyandrepaireffort
areproven.
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